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ABSTRACT 
 

3-D motion estimation method based on computer vision theory is employed to implement a vision guide algorithm for 
UAV in this paper. First, the image sequences of landing target are taken by the camera mounted on UAV with known 
focal length and the Lucas-Kanade method is adopted to estimate two successive frame optical flow; then a hierarchical 
approach is described to effectively decompose the nonlinearities of the 3-D motion estimation into two linear 

subsystems; finally 3-D motion and structure(depth）information of landing target relative to UAV is recovered without 

using features of landing target . Experiments using both computer simulated images and real video images demonstrate 
the correctness and effectiveness of our method. 
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1 VISION-GUIDING PRINCIPLE FOR UAV AUTO-LANDING ON DECK 

 
Unmanned Aerial Vehicles (UAV), particularly ones with vertical takeoff and landing capabilities (VTOL), enable to 

prevent harmful events for human pilots. A VTOL UAV with capability of autonomous landing on a ship would be very 
useful to perform various tasks, such as search, rescue, and other military scenarios. An autonomous landing maneuver 
on a ship in the terminal period depends largely on two capabilities: the decision of when to land and the generation of 
control signals to guide the UAV to a safe landing. This paper focuses on the two capabilities by adopting traditional 
vision-guiding approaches relying on a high-contrast planar landing target on a ship, that can be easily identified by a 
nadir-pointing monocular camera mounted on the UAV. The problem addressed here is a special case of 3D motion 

estimation between on-board camera and the ship since all feature points lie on a planar surface (the landing target). 3D 
motion estimation can be roughly classified as feature-based or flow-based, according to whether the data they use are a 
set of feature matches or an optical flow field. We can recover 3-D motion parameters using a set of 2-D images, only 
computing the optical flow between two successive images, and get the relative position and orientation of the UAV. 
We make the following assumptions which simplify the problem but are not restrictive. A monocular camera is 

assumed being fixed to the UAV and the optical axis of the camera coincides with the vertical axis of the UAV body 
frame. In the terminal period of autonomous landing, the UAV is near hover at all instances over the high-contrast planar 
landing target on the deck and descends gradually. Then the UAV waits its chance to land in the area of landing target on 
the basis of the criterion: Relative to the UAV, the deck must be in the state of descend with maximum velocity less than 
2m/s in the vertical direction and its rotation angles less than 5°. From sequence of images for landing target taken by the 
on-board camera with known focal length f, the 3D motion Parameters between the camera and the landing target can be 
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related through the optical flow, and the schematic diagram of vision-guiding for UAV based on optical flow is 

illustrated in Fig.1. Particularly, our work in this paper is focused on the part of rectangles with full line in Fig.1. 

 
Fig. 1 Schematic diagram of vision-guiding for UAV 

 

2 OPTICAL FLOW BASED MOTION ANALYSIS 
A key task for any vision system is to extract information from a sequence of time varying images. This exercise is 

called Motion Analysis. Optical flow is one of the important tools in Motion Analysis and is formally defined as the 
apparent motion of image brightness patterns in an image sequence. It is an approximation of the perspective projection 
of a set of 3-D motion vectors, known as the Motion Field, onto an image plane. The motion field, and hence its 
approximation, the optical flow, carries rich information regarding the 3-D motion parameters. 

2.1 Optical flow computation 
Let I(x, y, t) be the intensity value of the image at pixel (x, y) in time t. If the immediate neighborhood of (x,y) is 

translated some very small distance(dx, dy) during the interval dt; the optical flow gradient constraint equation should be 

satisfied: 0=++ tyx IvIuI               (1) 

Where u= x& and v= y& , are components of optical flow in horizontal and vertical directions respectively; Ix, Iy and It  

denote partial derivatives of I(x, y, t) with respect to x, y and t respectively. Comparison of performance of many optical 
flow techniques, local differential approaches (Lucas and Kanade) were found to be most accurate and robust[1]. 

Following Lucas and Kanade[2], we implement a weighted least-squares fit of equation (1) to a constant model for 

(u,v)T in each local region Ω by minimizing  ∑
Ω∈

++
X

tyx IvIuIXW 22 ))((  (2)     

Where W(X) is a window that gives more influence to constraints near the center of the neighborhood Ω . The solution 
to (3) is given by  
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This can be reduced to a closed form solution for the flow estimates, viz., optical flow vector (u,v)T. 
2.2 Camera motion and imaging models[2,3,5] 

To recover the motion of the camera using image measurements of some points in the landing target from the so called 
optical flow estimation, we should formulate both the camera motion and the depth Z of the landing target derived from 

the optical flow (u,v)T.  The imaging of the camera is given by the pin-hole model perspective projection of points in the 
3D world onto the image plane, the camera coordinate is set as a three-dimensional Cartesian coordinate system with the 
origin at the camera’s lens and z-axis lying along the direction of the optical axis of the camera, pointing downward, and 

that y-axis and x-axis run parallel to the longitudinal axis and lateral axis of the UAV respectively. The camera 
coordinate (X,Y,Z) of a point in the space and the image plane coordinate (x, y) of its image are related by the perspective 
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transformation as[7]:    
Z
Xfx =

    
Z
Yfy =

             (4) 

Without loss of generality, we assume that the rotation angles of the oscillating deck are small. Appealing to the theory of 
the rigid body motion, the velocity of the arbitrary point (X,Y, Z) and the depth Z in the landing target can be related 
through the optical flow(u,v)T: 
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In which, T=(tx, ty, tz)T and R=(
zyx ωωω ,, )T is the transition and the rotation between two sequence  images, or 

in matrix form:           BRATZV += ˆ                    (6) 

Where =V [ ]Tvu  is the flow vector, (x, y) are image coordinates, and  
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2.3 3D motion parameters from hierarchical framework 
A challenging problem to recover (T,R) by solving the nonlinear system (6). In addition, algorithms based on 

derivatives of optical flow are very sensitive to noise in the optical flow estimates. Nevertheless, the observation can be 
obtained from the view of equation (6): If Z is known, (6) is a linear system with the motion parameters (T, R) unknown; 
If (T, R) is known, (6) is a linear system with the depth Z unknown. These two linear subsystems enable us to develop a 
novel solution technique of a hierarchical framework .Then due to the fact that the dynamic depth variation for the 
surface of the coplanar target is small compared to the distance between the optical center and the target, a hierarchical 
iterative algorithm is introduced as follows: 

 After dividing both sides in (6) by 2n, where the integer n is the level index, equation (6) can be written as      

RBTAZV nnnn += ˆ                        (7) 

The definitions of (xn, yn, Zn) and (un, vn) define a hierarchical “scene”, in which the sizes of all objects and the optical 
flow are reduced by half when the level n increases by one. The nonlinear system of motion, depth, and flow is defined 

by (7) for each level of such a hierarchical “scene”. Based on above deductions, the nonlinear system (6) is solved 
through the following two linear subsystems from coarse to fine:  

nn VMS = , [ ]nnn BAZS ˆ= , [ ]TRTM =     (8) 

nn FZE =ˆ , TAE nn = , RBVF lnn −=      (9) 

The motion (T , R) is estimated from (8) with Zn at the maximum level initialized to a constant. The resulting is then 
passed to (9) and 

nẐ  is re-computed. These estimations are repeated at each level until the motion is stableormaximum 

number of iterations is reached. nẐ  is then propagated to the next finer level and refined, until 
0Ẑ or Z is solved. 

2.4 Summary 
The recommended hierarchical algorithm with two linear subsystems is as follows: 

To establish the optical flow; The local differential method is used in the optical flow computation. Spatial neighborhood 
were 5×5 pixels, window function W(X) was separable and isotropic; its 1-d weights in the horizontal and vertical 
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direction were（0.0625 0.25 0.375 0.25 0.0625）.Both vector and intensity fields of optical flow were obtained in this 

step;To smooth the optical flow intensity field with 3×3 median filter; Using hierarchical iterative algorithm, the depth 

and the velocity of the arbitrary point (X,Y,Z) in the landing target can be recovered.  
 

3 EXPERIMENTAL RESULTS 
 

The effectiveness and the performance of our hierarchical approach to 3D motion estimation from two-frame optical 
flow have been tested using both computer simulated dada and the real video data. 

3.1 Computer simulated Experiments 
The source data, including two frames of “Buddha” image sequence as shown in Fig. 2 (a) and corresponding texts of 

motion parameters, were downloaded from http://sampl.eng.ohio-state.edu/ ˜sampl/ data/. All frames are 200 × 200 
pixels. The image sequence were generated from a virtual camera with the ground truth focal length (f=1000 pixel) and 
motion parameters.  

 
(a)               (b)            (c)  

Fig. 2 (a) Two frames of “Buddha” image sequence  
 (b) Optical flow vector (left head part)  

(c) Optical flow intensity distribution 
 

Tab. 1 Estimation of 3D motion parameters 

Computation value Motion 

parameters 

Real 

value (35,28) (51,33) 

tx/pixel 

ty/pixel 

tz/pixel 

80 

-110 

-40 

112.56 

-75.8 

-81.43 

118.74 

-78.41 

-75.33 

ωx/rad 

ωy/radωz/rad
-0.110 

0.110 

0 

-0.123 

0.121 

0.000848 

-0.121 

0.122 

0.00132 
 

Following the computation described in section 2.4, we can get the results 
including the optical flow vectors shown in Fig. 2(b) (left head part), the 
optical flow intensity distribution in Fig. 2(c), and also the parameters 
(T,R)for the image, e.g. image points: (35,28) and (51,33) (cf. table 1). In 
order to calculate the accuracy of depth Z estimation, the relative error 
for each 30 sample points is calculated and displayed inFig. 3.   

Fig.3 Distribution of depth relative error 

Table 1 shows that the estimation error is about 40 pixels in transition and about 0.01° in rotation. Together with the 
fact that the relative error of depth estimation is less than 5.5% (cf. Fig.3), our hierarchical approach is demonstrated as a 
correct and effective method. 

3.2 The Experiment with real video data 
The experiment set-up is composed by a cradle head which can pan and tilt with the uniform velocity of 0.208 rad/s 

and 0.103 rad/s respectively, and a camera with the focal length of 12 mm viz. 2000 pixels. The image sequences of a 
high-contrast featured landing target is taken with the camera mounted on the moving cradle head, which is Pal TV 
signal format with the rate of 25 frames/s , the image resolution is 768×576. These image sequences can be simulated as 
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that of the relative motion between UAV and the deck. Our implementation first smoothes any two successive frames 
image sequence with an isotropic spatial low-pass Gaussian filter with a standard deviation of 1.5 pixels, as shown in 
Fig.4(a). Then we can estimate two-frame optical flow from, the results are displayed in Fig.4(b). Moreover, the relative 
dynamic 3D structure (R,T and Z) of four selected points (every three points are not on a line) in the landing target can be 
extracted by the computation described in section 2.4. Appealing to the principle of space analytic geometry, the rotation 
angle θ between the deck and the image plane can be derived from 3D information at time t1 and t2 (cf. table 2 and 
table3.  

(3).                     

Fig.4 (a) One frame of target sequence; (b)Optical flow vector (local); (c)Optical flow intensity distribution 

Tab. 2 Estimation of the rotation angle θ at t1(θreal = 8°) 

3D coordinates of three points 

X/pixel Y/pixel Z/pixel 

Computation 

Value θ/° 

7.3825 >5° 163 

244 

255 

254 

368 

205 

163125 

163637 

164113 

Conclusion: 

Landing impossible 
 

Tab. 3 Estimation of the rotation angle θ at t2(θreal = 4°) 

3D coordinates of three points 

X/pixel Y/pixel Z/pixel 

Computation 

Value θ/° 

3.8163 <5° 56 

158 

231 

164 

272 

58 

162452 

162857 

163315 

Conclusion: 

Landing possible 
 

Table 2 and table 3 show that not only the relative descend velocity zt& but also the rotation angle θ can be derived with 

the hierarchical representation. Experiment with real video data also illustrates that the absolute errors for the estimation 
of the relative rotation angle are less than 1° when the real oscillating angle less than 10°. So, the proposed approach is 
availability in the moderate sea state [4]. 

4. CONCLUSION 
Flow-based 3-D motion estimation method is employed to implement a vision guide algorithm for UAV in the 

terminal period of autonomous landing on deck. A hierarchical representation for the relationship between the optical 
flow, depth, and the motion parameters is derived, and the resulting non-linear system is iteratively solved through two 
linear subsystems. The advantage of our techniques as opposed to feature-based techniques is that a repeat of 
segmentation of images and feature matching are not required. Meanwhile, the time aliasing problem is alleviated at the 
coarse level for any two-frame optical flow estimate so that the 3D motion estimation tends to be more accurate.  

The experiment with both computer simulated data and the real video data indicate the effectiveness and availability 
of the proposed approach. From the error analysis, we know that in order to get more robust and accurate 3D motion 
estimation, the improvement for optical flow estimation and the research for strategy how to select the points on the 
target should be done in the future.  
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