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Abstract—Motion estimation (ME) has been extensively applied 
in the computer vision, including vision-based target tracking in the 
air. For attaining robust performance in noise and handling 
obscuration or the parallel moving nearby target interferences 
trajectories, the ME algorithm based on the spatio-temporal 
continuous wavelet transform (CWT) with a band pass velocity 
Kalman Filter in the transform domain is proposed, which is 
designed to conduct the efficient multiple target tracking in an 
adjustable spatio-temporal processing block. The CWT allowing for 
the definition of three energy densities over a subset of the CWT 
parameter space, which accompanied with Kalman Filter has been 
employed to capture motion information over multiple frames and 
proved excellent in velocity selectivity. To best handle interferences 
among multiple nearby targets, a simpler and robust solution called 
as self-adaptive rotation of coordinates and a practical functional 
relation between the target radius, speed and the scale parameter is 
developed.  The presented novel joint processing technique using 
expectation-maximization based Gaussian mixture estimation, 
together with a global nearest neighborhood algorithm to perform 
data association，  achieves maintaining kinematic trajectory of 
every targets either in linear or nonlinear motion. Examples with 
synthetic data and real data taken in air surveillance are given to 
demonstrate the effectiveness of these proposed strategies. 

Keywords—Motion estimation; CWT; kalman; self-adaptive 
coordinate; expectation-maximization 

I. INTRODUCTION  
Motion estimation (ME) represents an intriguing field of 

research in computer vision. It is of primary importance for 
applications like object tracking in defense scenarios, motion 
compensated video compression,and automatic traffic monitoring 
[1]. The numerous methods proposed over the years to estimate 
motion parameters can be divided into two categories. The first 
group of methods process data in spatial domain, and the other in 
frequency domain [2]. In the spatial domain, motion can be 
estimated with feature based or block-matching algorithm 
approaches which is notoriously sensitive to noise and is easy to 
cause instabilities in tracking. Another approach for ME is based 
on frequency domain processing of the available data, and the 
transform-based methods are inherently robust to such 
inaccuracies.The frequency warping is applied to be an enhanced 

motion estimation scheme in order to improve the block matching 
accuracy. Furthermore,the multi-resolution representation of 
wavelet transform [3,4] which involves a different trade off in 
time/space frequency is very useful for the analysis of 
image/video signals. So the application of the continuous wavelet 
transform (CWT) on video signals for motion estimation is 
imperative in order to integrate target signal energy against 
random background noise. A joint spatio-temporal multiframe 
information processing algorithm based on the CWT is introduced 
in [5]-[7] where the energy densities are derived for motion 
parameters estimation. Applications of this strategy will benefit 
from a motion estimation algorithm that is adaptive to time 
varying object signatures and robust to sensor noise as well as 
temporary occlusions.Although the definition of three energy 
densities by integrating over a subset of the CWT parameter space 
and the principle of ME with energy densities by sequentially 
optimizing a state vector composed of velocity, position, and size 
parameters are described in detail in [5] and [6], few literatures 
take the issues that target moving in a higher speed and the 
interferences of parallel moving nearby targets into consideration 
in energy density optimization, which could easily result in the 
failure of target movement extraction. 

The main focus of this paper is to deal with the ME algorithm 
based on the spatio-temporal continuous wavelet transform 
(CWT) that address the aforementioned problems. It extends the 
local energy densities based ME [5] method with a bandpass 
velocity Kalman Filter to extract faster moving target accurately in 
multiframes. Particularly, a self-adaptive rotation of coordinates is 
created in the EM based Gaussian density estimation processing to 
effectively resolve the measurement pairing uncertainty when 
estimating the motion of multiple objects. Inspired by our 
previous work in [8], we construct adjustable spatio-temporal 
processing blocks to conduct the efficiency multiple target 
tracking. Moreover, a practicalfunctional relation is established to 
reasonably obtain the initial value of scale parameter and to help 
the further camera zoom operation. The proposed CWT-based 
algorithm can estimate both linear and nonlinear motion 
successfully in the simulations with synthetical data and real data 
taken in air surveillance. 
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The structure of this paper is as follows: Section II introduces 
the mathematical model of the spatio-temporal filtering method, 
reviewing the joint model properties of the energy-based moving 
target representation. In Section III the improved CWT-base 
algorithm for multi-target tracking is introduced and the factors 
that influence the performance of the proposed algorithm are 
analyzed. The experimental results both in the simulation and in 
the real video data are shown in Section IV. Conclusions are given 
in Section V. 

II. CONSTRUCT A FILTER FOR TARGET MOTION ESTIMATION 
Inspired by the motion tracking technology illustrated with 

CWT [5]-[9] which rely on signal transformations that model 
motion and object deformations, we provide a filter to estimate 
motion parameters of targets as a motion-selective sub-band 
decomposition for video signals. Here, the principle of each 
module for the proposed filter is elaborated. 

A. Principle of  Spatio-Temporal Filter 
For a time-varying signal , i.e. the object (2+1)D ( , , )s x y t

luminance signal is a function of spatial variables  and  and x y
time variable t and in the case of a linear motion with a constant 
velocity its motion can be characterized as: ( , )x yv v

                             
(1) ( , , ) ( , ,0)x ys x y t s x v t y v t  

The spatio-temporal CWT of  is defined as an inner ( , , )s x y t
product between the signal of interest and the ( , ) ( , , )s x t s x y t



wavelet basis  parameterized by vector , that is: g  g

                    
(2) * 21( ) ( , ) ( , )gS g x t s x t d xdt

c


  
   

The vector , directly associated with motion characteristics, g

is defined as  where  is the spatio-temporal { , , , , }g a c b 
 a

dilation, and which can be represented by ,c  2 2
x yc v v 

 
reach the velocity; the spatio-temporal is tan( / )y xarc v v 

given by  and .The asterisk * represents the complex b



conjugate operator, and the constant  is associated with the c

admissibility condition and depends on the wavelet 
family.Alternatively, the spatio-temporal CWT can be expressed 
in the wave number-frequency domain as: 

                       

(3)   * 21 ( , ) ( , )gS g k s k d kd
c



     
  

As it is suggested  in [6] a Morlet wavelet is chosen as mother 
wavelet  because of its separability of transformations and its 
tails taper off smoothly, which ensures a balanced tradeoff 
between frequency and time resolution. The Morlet wavelet can 
be defined  in the spatio-temporal domain and the wavenumber-
frequency domain respectively, by: 

(4) 
2 2 2 2 2 2
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The construction of the above-mentioned filter given by (4) 
and (5) is known as CWT used to map the input signal space to a 
physically meaningful parameter space. It can also be seen as a 
tool for motion based filtering, which has an excellent 
orientation and scale selectivity, thus will be applied to facilitate 
the ME algorithm development.To extract motion estimates we 
define a set of  local energy densities. 

In cases where the target undergoes the nonlinear motion, the 
motion process can be partitioned into small segments and the 
target motion within each segment will be assumed linear. Then 
the aforementioned model could be extended to the case of 
nonlinear motion by windowing the motion in time in a video. 

B. Energy-Based Representation for the CWT  
The CWT described above is perfectly reconstructing and 

preserving the energy provided by the mother wavelet  and a 
CWT energy density which can be regarded as evaluation 
function of the parameter vector  is defined as (6).  g

                 (6)    
2 2

( , , , , )g S a c b S g   
 

1.Velocity energy density: By fixing the scale to be the one 
evaluated in previous frame and partial integration on position 
parameters we can get the velocity (speed-orientation) energy 
density, which can be interpreted as an estimator of local velocity:  

             (7) 
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b

c s d b      

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where represents the temporal translation in current frame. 0
2.Spatial energy density:By fixing the scale and the velocity 
vector (including of speed and orientation angle) to be the 
previous ones, we can get the spatial energy density: 

                 
(8) 
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3.Scale energy density: By fixing the velocity vector (including of 
speed and orientation angle) to be the previous ones and operating 
partial integration on position parameters, we can get the scale 
energy density: 

            
(9) 
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



Then locally optimization operations can be done to the above 
three energy densities to get the motion parameters. We can also 
say that the CWT based filter is derived into three filters, 
separately called velocity filter, position filter and scale filter. 
Thus our CWT-based ME algorithm is constructed completely 
via the defined three energy densities and consisted of a frame-
by-frame optimization of the motion parameters associated with 



 

the tracking target in the image sequence. 

III. MOTION ESTIMATION STRATEGY 
With the introduction in section II, a spatio-temporal filter 

based target tracking algorithm can be developed. Our ME 
algorithm,which can determine target coordinates frame-by-
frame, can be viewed as a target tracking algorithm after the 
initial detection, such as optical flow operation, has been 
performed. A flow diagram of the state updating process for 
either one target or multi-target performed by the CWT-based 
ME algorithm is depicted in Fig. 1.  

A Nelder-Mead[5][14]simplex search algorithm was 
employed for energy density optimization, which appeared to 
work well in the situation that the targets are far apart. 
Unfortunately, it can’t handle the energy densities of multiple 
close-by or crossing targets. Note that if  and  are large 0k


0

enough, (4) and (5) approximate the expression of a modulated 
Gaussian filter in spatio-temporal and wavenumber-frequency 
domains respectively. Motivated by the mathematical 
convenience of Gaussian functions and inspired by the tracking 
strategy in [6], we adopted an EM based Gaussian mixture 
estimation [10][11] as a joint multiple density processing 
technique in order to deal with target interferences.The proposed 
approach, which handles the energy densities via Gaussian 
mixture estimation and uses EM to calculate the parameters, is 
robust to such errors, because of the simultaneous processing of 
the adjustable block formulated with several sequential frames 
and the novel technology of self-adaptive rotation of coordinates. 
At last, one of the data association algorithm [12]  is designed to 
handle target interference which causes track bias and realize a 
high performance multi-target tracking algorithm.The improved 
strategy and the implementation based on the existing CWT 
tracking algorithm are presented here, which is elaborated in 
following. 

A. Adjustable Spatio-Temporal Processing Block 
Often there is the case that ME task is not tracking all of the 

moving targets in the video but only several of them. If all pixels 
are processed, the added uninteresting targets will bring not only 
the interferences to the tracking but also the computation cost. To 
solve this problem we propose an adjustable processing window 
strategy which puts the close-by targets in the same window, and 
only the data of pixels within the windows are processed. These 
windows guarantee that the square-integrable signals over time 
and space belong to processing blocks symbolically represented 
by , where  is the index of processing blocks. Thus the time-

pws p
varying motion parameter values are obtained by processing the 
blocks once.The detail is described in the following way. 

First the locations of the tracking targets in current frame can 
be roughly evaluated according to their locations and velocities in 

the previous frame, and one step further their location coordinate 
distances and . These target relationships can be defined as dx dy
either “directly related”, which would met condition represented 
by (10), or “indirectly related” respectively.  

                        (10) 0 0ij ijdx d and dy d 

where  is determined artificially according to the speed of 0d
targets and the temporal length of blocks.All of the directly 
related and indirectly related targets are collected together into 
one block if they are included in its spatial boundaries. 

B. Estimation of velocity 
Being different from the Nelder-Mead maximum likelihood 

(ML) searching algorithm, the EM algorithm is a stochastic 
approximation procedure for ML. The energy density values of all 
the sampling points shall be firstly calculated as independent 
observations, each with underlying probability density function 
(PDF). Thus the high computational cost will associate with EM-
based CWT for obtaining the motion parameter ML estimates, 
especially for that of the velocity. To improve the computational 
efficiency of the EM-based CWT, a Kalman filter is adopted here 
to estimate the target velocity, while other parameters of targets 
are estimated by EM-based CWT in equation (8) and (9). The 
Morlet mother wavelet of (4) and (5) with  and 0 [ 2,0]k  



 are used in equation(9) and (10). Usually, Kalman filters 0 2 
are characterized by two equations: a state equation and an 
observation equation. The state equation is an adaptive predictor 
that updates the of the filter( )U k

,where ( ) ( 1, ) ( 1) ( )U k A k k U k W k    ( ) ( , , , )
k kk k x yU k x y v v

is the state prediction at frame and  is the prediction error. k ( )W k
 is the transition matrix. For the sake of combining a ( 1, )A k k

more reasonable kinematic model with the tracking ability for a 
moving target in a higher speed, the velocity in the state vector of 
the Kalman filter is adopted as the final parameters, and we still 
derive final location measurements from target energy densities 
with a Gaussian mixture.  
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C. Self-adaptive Rotation of  Coordinates 
 Though an EM algorithm can be employed directly for 2D 

density function estimation, the computational complexity is 
much higher than 1D density function estimation. Therefore, a 
novel extraction operation with the self-adaptive rotation of 
coordinates is presented for the 2D spatial energy density, 

, and a similar operation can be applied to 1D scale 
0 0 0 0

2
, , , ( )a c b 



energy density, . 
0 0 0

3
, , ( )c a 

To reduce the dimension of spatial energy density, it is a 
common way to simply decompose it by projection to x axis and 
to y axis respectively in the coordinates  shown in Fig. x o y 
2. However, massive experiments show a large error between the 
mean value obtained by EM Gaussian mixture estimation and the 
real location of the target when some one-dimensional 
coordinates of multiple targets are close to each other. We 
address the problem by turning the original image coordinates 
system anticlockwise around the origin  with an angle o 

 to form a new coordinate system , so as (0 / 2)   ' 'x o y 
to increase the coordinate differences between the targets. 

For example, as shown in Fig. 2, the coordinate difference 
between target 3 and target 4 in the original coordinates  x o y 
is small, but their coordinate differences are enlarged in the new 
coordinates . If there are  targets whose locations are ' 'x o y  pn

, in the processing window in( ( ), ( ))i ix k y k ( 1, 2,..., )pi n pw
, then its correspond location in the coordinates x o y 
 can be calculated by: ' 'x o y 

              (11) ' ( ) ( )cos( ) sin( )
' ( ) sin( ) cos( ) ( )
i i

i i

x k x k
y k y k

 
 

      
         

Furthermore, the location coordinate differences between the 
targets can be obtained by: 

    (12) 
' ( ) ' ( ) ' ( )
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ij i j
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Obviously, the optimal coordinate rotating angle  should be 
the value that can make all of the coordinate differences as large 
as possible, and the majorization can be realized by the proposed 
self-adaptive coordinate rotation traversal method illustrated by 
equation (13). Consequently, the location energy density  is 2
reducing dimensions into  and  shown in formular(14). 2

'ix 2
'jy

    (13)   max min ' ( ), ' ( ) , 0, ,... / 2
h

ij ij hdx k dy k


     

             (14) 

2 2
'

( ', ')

2 2
'

( ', ')

( ', ') ' , 1, 2,...,

( ', ') ' , 1, 2,...,

i
i j p

j
i j p

x i j j x
x y w

y i j i y
x y w

x y y i n

x y x j n

 

 





   



  










The Gaussian Mixture Model (GMM) [12]with the known 
number of components is chosen to model real data of  the 
reduced one-dimensional spatial energy densities. Extracting the 
parameters of each single Gauss is a problem of curve fitting. The 
GMM shall be normalized before fitted:  

                 (15) 
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We successfully translate the fitting issue into a density 
estimation problem, and thus the powerful iteration algorithm 
EM under the Maximum Likelihood frame is employed. 

D. Functional Relationship of Speed, Scale and Radius 
Assuming the motion parameter of the tracked target in frame 

 of is given by: , where1k 
pws 1 1 1 1 1 1( , , , , , 1)k k k k k k

i i i i i ig x y c a k       1k
ia 

represents the kinematic scale of the targets relative to the block 
and in pixels. Particularly, to determine more 1 1 1( , , )k k k

i i ix y c   1
ia

reasonably, we analysed the relation between the target radius , r
the speed  and the kinematic scale , and then established the c a
polynomial fitting for scale  and radius  respectively. The a r
cubic polynomial whose fitting parameters got from a great 
number of experimental data with variation range of the target 
radius  from 1 to 12 pixels and that of the velocity magnitude r

 from 1 to10 pixel/frame is finally obtained in an empirical c
manner as the (16) and (17). Formula (16) provides a reasonable 
initial value  to the benefit of the more accurate ME 1

ia
processing, while (17) could provide a control parameter  for r
automatic zoom of the camera or visual guidance based on the 
target tracking. 

(16)

3 3 2 2 2

2

=-0.0029 +0.0042 +0.0069 -0.0018 +0.0435
-0.0188 -0.1390 +0.5702 +0.3846 +0.1526

a r c r c rc r
c rc r c

      (17)
 

3 3 2 2 2

2

=0.0539 -0.0082 -0.2153 +0.0656 -0.1332
-0.2674 +1.5504 -0.0943 -1.5498 +2.3668

r a c a c ac a
c ac a c
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IV. EXPERIMENTAL RESULTS  
In order to test the proposed approach, we perform a number of 

experiments with synthetic and real videos. The purpose of using 
synthetic videos is to control the precise parameters of the target 
displacements, and thus to get ground truth available, for the 
verification of the location estimation results. 
A. Simulation Experiments 

TEST1: The video includes a continuously varied gray grade 
background and three moving targets, whose trajectories are 
formulated by (18), (19) and (20) respectively, moving with the 
corresponding linear, accelerated rectilinear and circular. The 
targets, whose radiuses are given in pixels:  ,  and 1 3r  2 3r 

 , are of a circular shape which means the intensity value of 3 5r 
the pixel on the target is the identical.  

                             (18) 
   
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1

1

200 2 2 1

205 2 2 1
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

  

     (19) 
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      

2
2

2
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x k k k

y k k k
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

      

          (20) 
    
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3

3

370 100cos 3.725 0.021 1

295 100sin 3.725 0.021 1

x k k

y k k

    

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We compare our tracking results (method 1) with the Nelder-

Mead searching algorithm based CWT approach in [5] (method 
2) and the EM-based CWT strategy in [6] (method 3) in TEST 1. 
Part of estimated location values are listed in Table I . The Space-

time representations of the trajectories using three different 
methods are shown in Fig. 3-1, to 3-3. 

The results show that all of the three methods can provide a 
good indication of the small target motion, without interference 
from the background luminance variation.As shown in the 
figures, at and after the three crossing point, the ME algorithm 
proposed in this article can successfully stay in track, however, 
the tracking trajectories are mistakenly merged or disorientated 
by the other two methods. What’s more, as the distance between 
targets from far to near or from near to far there is no false 
tracking which reflects from the side that the strategy of 
processing window selection is appropriate. 
B. Realistic Video Experiments 

TEST2: The video is photographed on the roof about 60m 
high. Five moving cars are our tracking targets in the video with 

 pixels2 of each frame. The initial speeds of them are 720 576
between 0.8 pixels per frame and 2.5 pixels per frame. Fig. 4-1 to 
4-3 refer to the tracking results of 14th, 110th and 149th frame 
respectively. The centroid distance, which is about 10 pixels, of 
the two targets tracked by the blue and green window is the 
minimum of all target distances throughout the entire process, 
and the radiuses of the two targets are all about 3 pixels.  

This result shows that our tracking strategy is not interfered 
by the static background and has strong anti-shielding capability 
and adaptation to small targets. In addition, the tracking result of 
the closely spaced three  cars in the upper part of the image 
shows that the problem of target mutual interferences can be 
solved elegantly. 

TABLE II
POSITION DATA FOR DIFFERENT TARGETS IN A PROCESSING WINDOW

Methods of 
Location 

estimation

Locations 
of The 
Targets

Frame Number

37 38 39 40 41 42 43

Real Locations 1 1( , )x y (301.8,306.8) (304.7,309.7) (307.5,312.5) (310.3,315.3) (313.1,318.1) (316.0,321.0) (318.8,323.8)

Method1 1 1( , )x y (304.6,309.1) (307.7,312.7) (309.3,315.0) (312.0,318.1) (314.7,319.6) (317.3,322.2) (319.7,324.6)

Method2 1 1( , )x y (273.5,315.8) (273.5,317.0) (273.6,318.4) (273.9,319.9) (274.2,321.5) (274.8,323.3) (275.4,325.4)

Method3 1 1( , )x y (302.9,306.5) (306.2,309.4) (309.1,312.0) (311.9,316.8) (314.7,319.6) (317.3,322.2) (319.8,324.7)

Real Locations 2 2( , )x y (269.7, 330.3) (265.4,334.6) (260.9,339.1) (256.4,343.6) (251.7,348.3) (247.0,353.0) (242.1,357.9)

Method1 2 2( , )x y (271.2,334.0) (265.9,338.3) (260.2,341.2) (255.6,345.2) (250.2,350.8) (247.4,355.2) (242.6,359.9)

Method2 2 2( , )x y (274.1,318.4) (270.9,319.3) (267.7,320.1) (264.6,321.0) (261.4,321.8) (258.2,322.7) (255.0,323.5)

Method3 2 2( , )x y (273.9,330.2) (273.0,335.0) (273.0,340.5) (266.5,345.7) (274.1,349.9) (274.9,354.6) (275.7,359.3)

Real Locations 3 3( , )x y (271.5, 312.2) (271.9,314.3) (272.3,316.3) (272.8,318.4) (273.3,320.4) (273.8,322.4) (274.4,324.4)

Method1 3 3( , )x y (273.8,316.4) (273.4,319.4) (273.2,322.3) (272.7,321.8) (271.2,322.2) (274.8,323.8) (275.3,326.0)

Method2 3 3( , )x y (273.5,315.8) (273.5,317.0) (273.6,318.4) (273.9,319.9) (274.2,321.5) (274.8,323.3) (275.4,325.4)

Method3 3 3( , )x y (268.9,314.4) (265.2,317.9) (260.0,320.5) (263.6,319.2) (252.0,321.0) (247.1,322.8) (242.7,325.2)

Method 1: The Method Detailed in This Article
Method 2: Use Nelder-Mead to Extract Parameters of Targets From Energy Densities
Method 3: Use EM to Extract Parameters of Targets From Energy Densities But without Coordinate Rotation



 

 Fig. 3-1 Trajectories Using Proposed Method
Fig. 3-2 Trajectories Using Nelder-Mead-Based 

CWT Method
Fig. 3-3Trajectories Using EM-Based CWT Strategy 

Without Coordinate Rotation
 

 

              
Fig. 4-1 Frame 14

         
Fig. 4-2 Frame 110 Fig. 4-3 Frame 149

V. CONCLUSION 
We have presented a novel strategy for the extraction of 

motion parameters from video sequences using the CWT. The 
proposed approach has the advantages of being robust to local 
spatio-temporal illumination variations, local measurement noise 
and object occlusions, by processing sequential multi frames in a 
video simultaneously. Instead of three energy density functions, 
two of them are approximated by Gaussian mixtures and 
estimated by a joint EM estimation with self-adaptive rotation 
coordinate technique, meanwhile Kalman filter as a tool to 
analyze the velocity of the spatio-temporal signals. All of the ME 
processing is carried through in an adjustable spatio-temporal 
processing block. This makes it more computational efficient 
than the pre-existing CWT methods in order to provide robust 
results in such cases. Experiments with both synthetic and real 
video sequences lead to more accurate location estimation, even 
in the presence of local occlusion. 
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