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Abstract

In the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) project, fiber
positioners align the fiber ends to designated positions on the focal plane to capture high-quality
spectra of specific celestial objects. Therefore precise measurement of fiber end positions is
essential for accurate control in the closed-loop positioning system. Current measurement
systems primarily rely on 2D planar methods, which cannot achieve precise positioning of fiber
ends on LAMOST’s curved focal plane. However traditional 3D measurement methods often
struggle to reconstruct specific targets, leading to excessive data redundancy and reduced
accuracy. To address these issues, this paper proposes a novel monocular vision-based 3D
measurement method for LAMOST fiber ends under both front and back illumination. In this
method, coding points and a baseline ruler are placed on the focal plane; the coding points help
determine camera poses, while the baseline ruler recovers the physical scale of the measurement
results. Images of the coding points and fiber end-faces are first captured under front and back
illumination using a single camera that takes frames with movement, and the enhanced
spot-grayscale distribution model algorithm is introduced as an efficient and accurate method
for spot center extraction. Subsequently, the decoding method of coding points-clustering and
pattern matching method is proposed for automated recognition and decoding of the coding
points. Finally, a fusion-coded structure-from-motion based 3D reconstruction method, is
employed to measure the fiber end positions in 3D. Results show that the method achieves a root
mean square error of 0.049 mm in fiber optic 3D measurement error. The proposed 3D
measurement method for fiber ends is vital for closed-loop control in LAMOST and is also
applicable to high-precision measurement of the fiber ends in other multi-object spectroscopic
telescopes.

Keywords: 3D measurement, spot center extraction, structure from motion

1. Introduction modern astronomy and space technology have enabled large-
scale sky surveys through the development of ‘multi-target
Astronomical spectra contain critical physical information, spectral fiber’ technology. The Chinese Large Sky Area Multi-
making precise acquisition and analysis essential. Advancesin  Object Fiber Spectroscopic Telescope (LAMOST) telescope
(Cui et al 2012), with its large number of fibers arranged on
a curved focal plane, boasts an ultra-large aperture and wide
field of view, securing a leading position in global sky survey
* Author to whom any correspondence should be addressed. projects. These features allow LAMOST to efficiently conduct
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large-scale astronomical observations. To maximize the accur-
acy of spectral information acquired by LAMOST, each fiber
end on the curved focal plane must be precisely aligned with
its corresponding star. However, fiber positioning errors are
inevitable due to factors like machining precision, motor oper-
ation accuracy, and focal plane installation accuracy. Accurate
measurement of fiber end positions on the curved focal plane
is a prerequisite for developing the LAMOST closed-loop
fiber positioning system (Xing et al 2007) and ensuring high-
precision fiber positioning.

Multi-target spectral telescopes like LAMOST are
employed worldwide. Examples include the prime focus spec-
trograph (PFS) on Japan’s Subaru Telescope (Fisher et al
2014), the dark energy spectrograph (DES) in the United
States, and the multi-object optics and near-infrared spec-
trograph (MOONS) in the UK (Montgomery et al 2016).
Multi-target spectral telescope features multiple optical fibers
arranged on the focal plane. Each fiber can be individually
aligned with a target, transmitting its optical signals to the
spectrometer for analysis. Consequently, these telescopes
require a sophisticated fiber-optic positioning system to pre-
cisely adjust the fiber end face, capturing spectral information
through closed-loop feedback control.

Various countries have proposed different approaches to
achieve precise fiber positioning. The Subaru Telescope in
Japan developed a photometric camera (Wang et al 2012)
for its new multi-fiber spectrometer to measure the two-
dimensional position of the fiber end face and provide feed-
back for COBRA system positioning. The photometric camera
captures images of backlit fiber end face on the focal plane,
measures them in two dimensions within the COBRA sys-
tem’s coordinate system, and converts these positions to the
2D coordinates of the fibers on the focal plane. In the DESI
telescope in the USA, to ensure closed-loop control during
fiber positioning, the fiber is back illuminated after each move-
ment, and its actual 2D position is measured by a on-axial CCD
camera located in the central aperture of the primary mirror
(Schubnell et al 2016). The deviation between the actual and
set 2D positions of the fiber, as measured by the CCD cam-
era, is sent to the fiber positioning controller, which adjusts the
fiber’s position for precise correction. The European 4MOST
telescope’s metering system (Winkler et al 2016, 2022) com-
prises four identical metrological cameras that capture images
of the measurement and fiducial fibers. After capturing fiber
images, a computer program in the metering system extracts
the profiles of all fibers, calculates the center of mass for each,
and determines the 2D positions of all measurement fibers rel-
ative to the fiducial fiber on the focal plane through coordinate
system transformation. MOONS is the third-generation vis-
ible and near-infrared spectrograph for the ESO Very Large
Telescope (Watson et al 2022). The MOONS fiber-optic unit
is positioned at the end of each axis with a reference point
identifiable by the fiber-optic measurement camera. A high-
resolution camera captures images of the fiber-optic position-
ing unit under ambient light, determines its biaxial orientation
from the reference point in the image, and then measures the
fiber’s 2D position using backlight illumination.

In LAMOST system, the initial fiber-optic positioning
system (Li et al 2004) uses an open-loop design, with its
performance calibrated annually through short-range test-
ing. However, the open-loop system provides low position-
ing accuracy and the annual calibration interval is too long,
resulting in gradual accuracy degradation and difficulty in
achieving high-precision positioning. To enhance the accur-
acy of the fiber-optic positioning system and reduce the need
for frequent calibration, upgrading to a closed-loop system is
essential. Precise optical fiber position detection is critical to
the closed-loop feedback mechanism and the overall perform-
ance of the fiber-optic positioning system (Xing et al 2007).
Therefore Gu et al (2008) developed a fiber-optic 2D posi-
tion detection system utilizing a triple line array CCD. The
system employs image stitching within a face-array camera
partitioning scheme to divide a large field of view into mul-
tiple sub-regions. These sub-regions are captured by moving
or rotating a single face-array camera and are subsequently
stitched together. Later, Zhao et al (2018) employed a polyno-
mial calibration method to optimize the 2D coordinates of the
fibers on the focal plane. This method simplifies the mapping
between image points and spatial points, enabling the planar
coordinates of spatial points to be deduced from image points
through a fitting formula. Pan (2022) installed a visual meas-
urement system, comprising a high-resolution CMOS camera
and a telephoto lens, around the MB primary mirror, approx-
imately 20 meters from the focal plane, to zone the optical
fibers. The camera was positioned off the telescope’s optical
axis to avoid obstructing the optical path, preventing an angle
between the focal plane of the fibers and the camera’s imaging
plane, thereby reducing measurement errors.

In practice, the focal plane of LAMOST is curved. In
practice, the focal plane of LAMOST is curved. The focal
plane exhibits a spherical curvature, with a total bending
angle of approximately 2.88 ° over the entire focal plane.
However, most existing optical fiber end face measurement
systems employ a two-dimensional planar method. The cur-
rent LAMOST fiber end face position is measured using a
two-dimensional image method based on multi-camera spli-
cing. The cameras are positioned far apart to approximate the
curved surface as a flat plane, which will introduce a max-
imum measurement error of 1.69 mm. This error may affect
the positioning accuracy of the fibers and should be considered
in high-precision measurements. Therefore, it is essential to
study high-precision 3D measurement of the LAMOST fiber
end face position.

This study presents an innovative 3D measurement method
that overcomes key challenges in optical metrology for astro-
nomical instrumentation. Initially developed for the LAMOST
telescope upgrade, our approach significantly improves the
high-precision measurement of micrometer-scale fiber targets
on curved surfaces, a persistent challenge in metrology. By
integrating front and back illumination with enhanced spot
center extraction grayscale distribution model (ES-GDM) and
fusion-coded structure-from-motion (SfM), we achieve unpre-
cedented precision in fiber end-face measurements, redu-
cing root mean square error (RMSE) by 34.7% compared to
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conventional methods. Beyond astronomy, this work estab-
lishes a new paradigm for contactless 3D measurement of
small features, attaining measurement error of 0.049 mm while
improving computational efficiency by 5.89x over traditional
SfM. These advancements are particularly valuable for indus-
trial metrology, biomedical imaging, and other fields requiring
high-precision measurements on non-planar surfaces, where
conventional techniques often compromise accuracy, speed,
or system complexity.

This paper is organized into the following sections.
Section 2 details the principles and methods of the pro-
posed three-dimensional measurement of fiber end face pos-
ition. Section 3 presents the experimental measurement sys-
tem. Section 4 discusses the results of the method. Section 5
provides the conclusion.

2. Method

The 3D measurement method proposed in this paper enables
precise 3D measurement of the LAMOST fiber end-face by
processing images of the focal plane fibers captured from
different angles. The methodology includes three key parts:
(1) extraction of spot center based on grayscale distribution
model; (2) the decoding method of coding points based on
clustering and pattern matching; and (3) 3D reconstruction
method based on SFM and coded information. The overall
solution flowchart is shown in figure 1.

An overview diagram of our setup is provided in detail in
figure 2. In our setup, the camera and the front-illumination
source are positioned 2 meters in front of the fiber end face and
3.5 meters to the right of the focal plane, respectively, while
a device integrating the spectrometer and a back-illumination
source is placed behind the focal plane.

The LAMOST simulation system contains a total of 15
optical fibers. During normal operation, the measured light
passes from the front of the focal plane through optical fibers
into the spectrometer, while during fiber end-face position
measurements, the end-face of the optical fiber will be illu-
minated by a back-illumination source for the determination
of its position. The imaging strategy entails capturing sequen-
tial frame images through the motion of a single camera, while
integrating both front and back lighting sources. Specifically,
at each shooting location, two images are captured: a front-
illuminated image, taken with the front light turned on, to
extract coding points information; and a back-illuminated
image, taken with only the back-illumination source active, to
extract fiber spot data.

2.1. Extraction of spot center based on grayscale distribution
model

Accurate extraction of key feature points, specifically the 2D
spot centers of photographed fibers and coded points, is cru-
cial for 3D measurement of the LAMOST focal plane fiber
end-face. The 2D coordinates of these key feature points are
essential for multiple stages of the 3D measurement pro-
cess. We developed the extraction of spot center based on

ES-GDM. The model comprises three steps: spot identifica-
tion under multiple constraints, bilateral filtering with adaptive
weights, and spot center extraction using adaptive threshold
segmentation.

When acquiring LAMOST focal plane spot images, inter-
ference from noise and deformation is inevitable (Yang
et al 2024), as shown in figure 3. Traditional methods
such as threshold segmentation, template matching, and
machine learning struggle to achieve optimal spot recognition.
Therefore, we propose a multi-constraint recognition method
based on the differences in gray-scale distribution between
light spots, background, and clutter. We observe that light
spots exhibit the following characteristics compared to back-
ground and interference clutter: (1) higher average gray value,
(2) nearly elliptical shape, and (3) consistent size. These fea-
tures enable accurate spot identification, so we define three
constraint criteria: mean gray value, contour, and size, to
ensure precise spot recognition in the focal plane image.

However, the presence of noise in the spot region can
hinder accurate spot center extraction. To reduce noise and
enhance spot center extraction accuracy, we evaluated various
filtering algorithms, selected the bilateral filter (Gavaskar and
Chaudhury 2018), and further improved its performance. This
methodology preserves edge information while effectively fil-
tering noise, as shown below:

> Wlxy) x1(i.j)
j(x y) _ (i) €S,y
’ > W(iJ)

(i) €S,y
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where I(x,y) represents the noise-containing image, I(x,y)
is the filtered image, Sy, is the set of spatial neighborhoods
within the filter window, and W (x,y) is the total bilateral filter
weight.

Given that the gray values of the spot image follow an
approximate normal distribution, we use the global gray stand-
ard deviation as the standard deviation for pixel values in the
bilateral filtering. The filter window size is set to 3 to match
the spot size.

Analysis of the acquired LAMOST fiber and coding point
spot images revealed that the gray value distributions of both
approximately follow a Gaussian distribution (Sun and Xie
2023), as shown in figure 4.

We also generated the grayscale histograms for the encod-
ing point and fiber spot, as shown in figure 5. These histograms
exhibit two prominent Gaussian distribution features, where
the lower and higher grayscale regions correspond to the back-
ground and spot grayscale characteristics, respectively.

Using the Gaussian-distributed spot shape from figure 4 and
the grayscale histogram features from figure 5, we set the gray-
scale value at the standard deviation of the first approximate
Gaussian distribution as the adaptive segmentation threshold
I, as shown in equation (2). This dynamic threshold setting
not only preserves the spot’s edges but also reduces the extrac-
tion error of the grayscale center of gravity method,

SN I(i7 .)’(I(i’ .)>Itr)
1(i,j) { 255], (10, j)]< I) )
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Figure 3. Edge skeleton line extraction result.

where I(i,j) represents the gray value at (i, f).

The exact location of the spot center can be determined
by the gray center of gravity method, which calculates the
weighted average of the gray values and coordinates of all
pixel points in the segmented image, as expressed below:
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Figure 4. Fiber (right) and coding point (left) spots and their
grayscale distribution.

where f(x,y) is the gray value of the pixel point, M,N are the
length and width of the image, and xy,y, are the center coordin-
ates of the target spot.

2.2. The decoding method of coding points based on
clustering and pattern matching

After extracting the center of the key feature spot, the next
crucial step in solving the extrinsic matrix of the camera at
different positions using the structure from motion (SFM)
(Schonberger and Frahm 2016) method is to match the key
feature points across each frame. However, fiber images taken
under back illumination lack distinct texture features, ren-
dering traditional SFM feature matching methods (e.g. SIFT
Lowe 1999, SURF Bay er al 2008), which rely on corner
and edge points, unsuitable for this task. To address this, we
match key feature points across frames using coding points,
which are clearly imaged and contain encoded information.
To address this, we assist in matching key feature points across
different frames by using coded points, which are more clearly
imaged and contain coded information.

In this paper, we utilize point coding, with the design prin-
ciple illustrated in figure 6. The system includes 33 points: 5
template points and 28 decoding points. Each group of cod-
ing points contains 8 points: 5 template points and 3 decoding
points selected from the 28 available. In figure 6, points A, B,
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Figure 5. Histogram of grayscale of spot image.

C, D, and E are template points. Point C is the coordinate ori-
gin, with CD and CB representing the x and y axis directions,
respectively, and points A, C, and E lying on the same line.

Based on the design principle of coding points, we
developed a decoding method of coding points based on clus-
tering and pattern matching (DMCP-CPM), consisting of two
steps: coding point identification using an improved clus-
tering algorithm and coding point decoding through pattern
matching.

First, we identify the coding point clusters by clustering the
light spots. Light spots belonging to the same coding point
group are categorized into a single cluster, and the number
of clusters corresponds to the number of coding point groups
in the image. The scatter distribution analysis is shown as
figure 7. Classical clustering algorithms, such as division-
based K-Means (MacQueen et al 1967) and density-based
DBSCAN (Ester et al 1996), struggle to accurately cluster cod-
ing point groups. K-Means is sensitive to noise and outliers
because it relies on the initial cluster centers, while DBSCAN
heavily depends on neighboring parameter settings, making
it difficult to separate clusters with close densities but distant
locations. Therefore, inspired by the K-distance concept, we
propose an improved clustering algorithm.

The method consists of four main steps: (1) Find the
distance set based on K-distance: traverse the initial point
set Cp = {p1,p2,"** ,Pm}Pm = (Xi,¥:), calculate the distance
between each point and the remaining points, and generate the
corresponding distance set and point set. (2) Obtain the bound-
ing box: calculate the bounding box of the points in the set and
continuously update B based on B = BU {x;,yim }; (3) Apply
thresholding based on second-order difference: since the data
in the distance and bounding box sets are discrete, and con-
tain inflection points, these inflection points in the distance
set are used as thresholds based on second-order differences;
(4) Clustering: finally, use the threshold to filter and eliminate
duplicate items, achieving clustering.

After identifying the coded points through clustering,
we apply the pattern matching principle for decoding. This

Figure 6. Schematic diagram of coding point design.
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Figure 7. Scatter distribution analysis.

affine transformation

Figure 8. Affine transformation schematic.

involves matching the actual image point set with the template
point set to achieve the mapping from the actual coordinate
system of the coded points to the designed coordinate system,
as shown in figure 8.

In figure 8, if the intersection of points B and D is denoted
as F, then the points C, F, E, and A are collinear. The
matching of these four points with the template points in the
design coordinate system can be achieved using the invari-
ance of their intersection ratio, as shown in equation (4). Next,
the affine transformation matrix is calculated using the least
squares method (see equation (5)), mapping the coordinates
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of the decoding points from the actual coordinate system to
the design coordinate system to determine the coding point
number,

AF-EC
EF-AC’

x’ a b x c
= 5
{ y' del|ly|T|rs ®)
where a,b,c,d denote the rotation, distortion and scaling
between the design coordinate system and the actual coordin-
ate system, c, f denote the translation between the two coordin-
ate systems. x,y represent the coordinates in the actual

coordinate system, and x’,y’ represent the coordinates in the
design coordinate system.

“

Ry EF,C)

2.3. 3D reconstruction method based on SFM and coding
information

By utilizing the matching information of the correspond-
ing coding points in the images from different frames, we
developed a 3D reconstruction method based on incremental
SFM and coding information (Fusion-coded SFM).

2.3.1. Relative orientation of the initial two image frames.
Determining the relative orientation of the initial two image
frames is essential for constructing a high-precision 3D model
(Zhou et al 2024). We first use the center coordinates of
matched coding points to estimate the fundamental matrix
between the images, then calculate the relative position and
orientation between them. Let point P be a point in 3D space,
with coordinates P = [X,Y,Z,1]T in the coordinate system of
the first frame (the world coordinate system). Points P; and
P, represent the image points of P on the two image frames,
and their relationship is constrained by epipolar geometry, as
shown below:

PI (k") EK~'P; =0 ©6)

where K represents the camera intrinsic parameters and E
denotes the essential matrix.

For a single image point, the fundamental matrix equation
can be expressed as in equation (7), solving the matrix
using the eight-point method with corresponding coded points.
Equation (7) expresses the epipolar constraint for a pair of cor-
responding points (x;,y;) and (x,,y,) in two images, where the
vector contains combinations of their coordinates used to form
a linear equation for estimating the fundamental matrix F,

[xix xiy2 x1 yix2 yy2 » % y2 1 ]F=0.
(N

Next, using the relationship between the fundamental mat-
rix and the intrinsic matrix K as F = (K - 1)TEK —1 the essen-
tial matrix E can be solved. The essential matrix E is a singular
matrix of rank 2 with two identical nonzero singular values,

denoted as o. Let the singular value decomposition (SVD) of
E be represented as below:

E=UxV" (8)

where U and V are orthogonal matrices, and ¥ is the singular
value matrix. For any E, there are two possible corresponding
t, R matrices, as follows:

€))

where Rz ( %) represents the rotation matrix obtained by rotat-
ing 90 degrees around the specified axis.

Since —F and E are equivalent, applying a negative sign to
any ¢ yields the same result. Consequently, after SVD decom-
position, four sets of solutions for R and ¢ are obtained. Of the
four possible solutions, only the one where the object point is
located in front of the camera in both frames (i.e. both camera
depths are positive) is retained. This is verified using the cheir-
ality condition as discussed in Hartley (2003). To determine
the correct physical solution among the four, we evaluate each
by triangulating a set of corresponding feature points from
the two views and checking the cheirality condition, which
asserts that the reconstructed 3D point must lie in front of both
cameras. Mathematically, this means the depth values of the
triangulated points must be positive when projected onto the
coordinate system of both camera frames. Therefore, the only
valid solution is the one in which the majority (or all) of the
reconstructed points satisfy this positive depth criterion in both
camera frames. Finally, the initial values of the rotation mat-
rix R and translation matrix ¢ between the first two frames are
obtained.

After obtaining the extrinsic matrix of the two image
frames, triangulation is used to estimate the spatial positions
of the image points. Let M; = K, [R, | T;] and M,, =K, [P, |
T,] represent the projection matrices of the camera at two dif-
ferent positions, and (uz,v;) and (ug,vg) denote the corres-
ponding 2D coordinates of the 3D point P in the two image
frames. The 3D coordinates of the point are then computed
using the least squares method, as shown below:

T -1 T
P=(Aism' -Aism) -Arsum' -Bism (10)
where:
Mm,u - MLZ,OML MLO,I - MLZ,I u, MLll‘Z - MLZ‘ZML
ALSM — ML],(i - MLZ,OVL MLI,I - MLZ,I Ve MLI‘Z - MLz,va
MRll‘ll 7MR2,lluR MRl),I 7MR2,1uR MRu,z 7MR2,2MR
MRI‘ll - MRz,uVR MRl,l - MRz,lvR MR],Z - MRz,zvR
(1D
MLML2,3 - ML0,3
vM,,—M
BLSM — L23 L1,3 (12)
MR2,3 - MR0,3
VRMRZ,S - MR1,3
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2.3.2. Coding and fiber point reconstruction based on incre-
mental SFM.  After completing the relative orientation of
the initial two-frame images, the generated 3D model serves
as the initial value (Zheng et al 2013). First, coding inform-
ation and incremental SFM are utilized to achieve the 3D
reconstruction of the coding points and to determine the cam-
era extrinsic parameter matrix. Subsequently, the intrinsic and
extrinsic parameter matrices are employed as a prior condi-
tions to reconstruct the fiber points in 3D.

After adding each new frame, we assess whether there are
common points with the reconstructed coded points. When a
new frame is introduced, we identify clusters with the same
encoded value as those in previously reconstructed frames. If
a cluster with matching code is found in both frames, then
all 8 points in the cluster can be deterministically matched
with 100% precision, due to the rigid spatial configuration
formed by five template points and the unique identifica-
tion enabled by three decoding points in each 8-point coded
cluster as shown in figure 6. This leads to a highly efficient
and reliable matching process, achieving an average match-
ing time of 0.0203 s for five coded clusters (40 points) across
two frames, without the need for complex computations or
optimization-based matching strategies. If common points are
identified, the 2D-3D matching is performed on the basis of
the coding information. Then the direct linear transformation
(DLT) (Shapiro 1978) method is used for bitmap estimation
in the newly added frame images. Unlike the traditional 2D—
2D method, DLT is a 3D-2D approach that ensures consist-
ent bit-position estimation across different scales. If the image
coordinate of a given image point is [x,y,1]T and its corres-
ponding 3D point coordinate is [X, Y, Z, 1]", a linear relation-
ship between the two can be established using the coefficient
matrix L as follows:

N X

v =Y (13)
Z

1 1

After obtaining the set of camera extrinsic matrices, trian-
gulation is applied to reconstruct the 3D coordinates of cod-
ing points that are common to the current and previous frames
but have not yet been reconstructed. However, a reprojection
error e exists between the projected 3D points on the image
plane and the actual measured image points. By minimizing
this error, the 3D coordinates and extrinsic matrix can be fur-
ther optimized.

Let P; represent the 3D coordinates of a specific coding
point. The coordinates of the corresponding image point in the
first image can be calculated as p;; based on the camera para-
meters, as shown below:

pij=KI[R|1]P; (14)
where K is the intrinsic matrix, R and ¢ are the rotation matrix
and translation vector representing the extrinsic parameters of
the camera.

To minimize the reprojection error, the maximum likeli-
hood estimate of the transformation matrix between the 3D

coordinates of the coding points and the images from each
frame is derived according to follows:

min» > " (i — K[R: | ] P;)’ (15)
i

where p;; represents the coordinates of the image point corres-
ponding to P; in the first image, extracted using the ES-GDM
method. In this equation, R; and #; are the rotation matrix and
translation vector representing the extrinsic parameters of the
camera for the ith image, respectively.

The trust region reflective (Le et al 2017) method is
employed to solve the nonlinear least squares problem in beam
method leveling. This method updates parameters by calculat-
ing the first-order derivatives (Jacobian matrix) and second-
order derivatives (Hessian matrix) of the objective function.
The trust region constrains parameter updates, ensuring vari-
ation within a specific range.

After completing the 3D reconstruction of all coding points,
utilizing the optimized set of camera extrinsic matrices, the
3D reconstruction steps for fiber optic points are outlined as
follows:

(1) Retrieve the camera extrinsic matrix (Hml,Hmr) from the
set of extrinsic matrices {H} for the two frames of image
(Im1 ,Imr) that share a common fiber point, and then solve
for the fundamental matrix F.

(2) Calculate the epipolar line L; in right image I,,, (Assume
that the equation of the polar line L; satisfies a;x + b;y +
¢; = 0) corresponding to the point p,; = (x;,y;) in left
image Ir,; using

li = Fpy. (16)
According to the principles of epipolar geometry, a 3D
point observed from a point of view p;; = (x;,y;;) in the
left image I,; will project onto the epipolar line L; (a;x +
b;y+ c¢; = 0) in the right image Iy. In the ideal case, the
perpendicular distance from pointp,; = (X;,y,) in Iyyy cor-
responds to the matching point of p;, = (x;;,y;;) to the epi-
polar line Z; should be 0. Therefore, the epipolar constraint
is utilized to filter the set of points in the right image.

(3) Calculate the perpendicular distance d; from each point
p;= (%), ¥,) in Iy, to the polar line L; (satisfies a;x+
b;y + c¢; =0), and add the points that satisfy equation (17)
to the set of candidate image points with the same
designation,

_ laixy+biy;+cil
Va:+b?

where d, represents the maximum distance threshold that
must be satisfied at that point. It is usually set to 5 pixels.

(4) Sort the distance sets in the candidate same-name image
point set, retain the point with the smallest distance as the
corresponding matching point of p;; = (x;;,y;;), and com-
plete the screening in the point set to eliminate the ‘false
image points’ and obtain the fiber optic point matching
information.

d; <d a7
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Repeated experiments conducted on five image pairs
showed that the minimum distances from all points (Points
P,;) to their corresponding epipolar lines are consistently
less than 0.5 pixels. Moreover, the ratio between the
second smallest distance (within the threshold range) and
the smallest distance exceeds a factor of 10. This sig-
nificant difference in epipolar distances clearly distin-
guishes correctly matched points from false correspond-
ences, achieving 100% filtering accuracy with an average
processing time of 0.0052 s per image pair. Such a dis-
tinction ensures the effective elimination of ‘false image
points’.

(5) The 3D coordinates of the fiber points are reconstructed
based on the coding point 3D reconstruction process.

2.3.3. Model scale adjustment. After obtaining the fiber
point data through incremental reconstruction, the baseline
ruler is reconstructed simultaneously to calculate the scal-
ing factor. This ensures that the reconstructed point model
closely matches the real object (Bernardini et al 2016). The
global model is then scaled according to the calculated scal-
ing factor. Since s is applied as a multiplicative factor to scale
the entire 3D point cloud from the reconstruction space to the
real-world metric space, the deviation of s will propagate lin-
early into absolute distance measurements. The deviation in
the scale factor s is primarily attributed to the metrological
error of the two baseline ruler lengths D, and Dy, character-
ized by calibration. In our study, the reference lengths were
calibrated and certified by a national metrology institute, with
traceable verification reports provided. Consequently, the cal-
ibration uncertainty of these reference standards is exception-
ally low (<0.001 mm), thereby minimizing potential bias in
the derived scale factor to the greatest extent possible. First, the
2D coordinates of the endpoints of the baseline ruler and the
extrinsic matrix of the corresponding frame are extracted. Let
eo and e; represent the two endpoints of the baseline used in
our experimental setup. The three-dimensional coordinates of
these two points are given by (Xeo, Ye0,Ze0) and (X1, Yer, Ze1 )s
respectively. The baseline ruler is then reconstructed using the
same method as for the fiber optic points, and its length d is
calculated as follows:

d= \/(Xel - XeO>2 +

Assuming the calibrated lengths of the two datum rulers
are D, and Dy, and the lengths obtained from the 3D recon-
struction of the point cloud are D, and D;. The formula for
the global scale factor s is obtained by combining the indi-
vidual scale factors of the two calibration scales (s, = %Z and

(Yer = Ye)> + (Ze1 — Zeo)>.  (18)

Sp= %Z) using a weighted average method, where the weights
of the weighted average are the squares of the calibration
lengths of the two baseline rulers (w, = D2 and w, = D3). The
global model scale factor s is calculated as shown below:

 WaSa+wWpsy Db53 +D, 5,37
Wq +Wp D,D,, (D JFDi)

19)

Coding points

Front light source

Figure 9. Constructed experimental setup system.

To account for the imaging difference between the two
perpendicular directions of the image, we incorporated two
baseline rulers in the scene. These two rulers were delib-
erately placed in approximately orthogonal directions, one
nearly horizontal and the other with a relatively large inclin-
ation as shown in figure 9. This setup ensures that horizontal
and vertical rulers could be given, thereby mitigating the dir-
ectional bias in the scale estimation.

3. Integral measuring systems

To achieve the 3D measurement of the LAMOST focal plane
fiber end-face position, we designed a monocular vision-based
measurement system and constructed a test platform at the
National Astronomical Observatories of China. This section
details the hardware components of the system and the meas-
urement workflow for the acquired images.

3.1. Measurement system construction

The experimental platform of the measurement system is
shown in figure 9. The main hardware includes: (1) Industrial
camera: AVT GT6600 industrial camera, with a high-
resolution 35 mm CCD sensor, offering approximately 30 mil-
lion effective pixels; (2) Lens: Schneider EMERALD 2.2/50 F
lens, with a 50 mm fixed focal length and an aperture range of
F2.2-F16; (3) Baseline ruler and coding points: the baseline
ruler is a carbon fiber rod used as a scale reference; (4) Light
source: LS LED 508A, operating at 7.4 V-14.8V DC and
30.5 W, providing adjustable white light illumination for the
coding points.

Due to the small size of the fiber in the image, it can easily
be overwhelmed by coding and stray spots, making extraction
difficult. Therefore, when capturing the fiber spot, we turn off
other light sources and activate the spectrometer to illumin-
ate the fiber using a back illumination method. For the coding
spots, we use the front-illuminated adjustable light source to
capture the spot image. The acquired images of the fiber and
coding spots are shown in figures 10 and 11, respectively.
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Figure 10. Back illumination image.

Figure 11. Front illumination image.

3.2. Design of the measurement process

The block diagram of the measurement process is presented in
figure 12, with the following steps:

(1) First, two front-illuminated images containing coding
points are selected. The centers of all spots are extracted,
and the coding points are decoded. The fundamental mat-
rix between the two images is then calculated using the
corresponding coding points, followed by polar matching
of non-coded points.

(2) Align the matched points in the two images and solve
for the camera position to obtain the extrinsic mat-
rix. Using the camera’s intrinsic and extrinsic mat-
rix, apply the least squares method to reconstruct all
matched points in 3D, resulting in the optimized camera
extrinsic matrix and the 3D coordinates of the matched
points.

(3) Select two fiber-optic images taken using back-
illumination at the same viewing angle as in step (1).
Extract the centers of the fiber spots, match them, and per-
form 3D reconstruction using the fundamental matrix and
camera extrinsic matrix obtained in step (2), ultimately
acquiring their 3D coordinates.

(4) Gradually incorporate images from new viewpoints and
use incremental SFM to accurately determine the 3D
coordinates of all fiber end faces, transforming them into
a common coordinate system. Follow the same steps to
reconstruct the baseline scale and calculate its base length
and scale factor s. Finally, apply the scale factor s to assign
the true physical scale to the entire 3D model and evaluate
the reconstruction results.

4. Result

4.1. Spot identification and center extraction

First, we performed a spot recognition experiment on
the acquired LAMOST focal plane image set, using the
multiple-constraints-based method proposed in section 2.1.
The visualization of the experimental results is presented in
figure 13.

The dataset consists of 1474 light spots. Among these, 1251
coding point light spots were identified, yielding an identific-
ation rate of 98.0%. For 106 baseline ruler light spots, 104
were identified, resulting in an identification rate of 98.1%. All
117 fiber light spots were successfully identified, achieving an
identification rate of 100%. Thus, the different light spots were
successfully classified. The experimental results are summar-
ized in table 1.

To quantitatively analyze the quality of the filtered images,
we conducted experiments using a mean filter, Gaussian fil-
ter, bilateral filter, and the adaptive weighted bilateral filter
proposed in this paper. These experiments were performed on
simulated spots, fiber spots, and coding point spots, with the
results presented in table 2. The results indicate that the adapt-
ive weighted bilateral filter outperforms the others in terms
of PSNR, ENL, EPI, and SSIM, demonstrating the method’s
superiority. This finding confirms that adaptive weighted bilat-
eral filtering effectively removes noise while preserving the
edges of spot images. These advantages make it particularly
suitable for denoising spot images on the LAMOST focal
plane.

Finally, we conducted experiments to extract the centers
of the light spots. However, because the true position of the
spot center in the captured image is unknown, we first simu-
lated and generated a Gaussian spot containing noise, as illus-
trated in figure 14. Next, we simulated 20 light spots with
varying sizes and gray values that conform to a Gaussian-
like distribution, generated on an image matching the cam-
era’s pixel dimensions (6576 x 4384 pixels). Subsequently,
we introduced Gaussian noise with varying standard devi-
ations and conducted four comparison experiments. To com-
pare the effectiveness of different spot center extraction
algorithms, we used the center coordinate deviation rate as
the accuracy evaluation metric, as 7 = df x 100%. Here, dy
denotes the distance between the extracted spot center and the
actual spot center, while r represents the radius of the actual
spot.

We employed several methods for spot center extraction
and comparison: the ellipse fitting method, the Hessian mat-
rix method, the fixed threshold grayscale center of grav-
ity method, the grayscale center of gravity method with
Otsu threshold segmentation, and the extraction of ES-
GDM, proposed in this paper. Figure 15 presents the
experimental results for the center coordinate deviation
rate.
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Figure 13. Spot recognition results.

Table 1. Experimental results of spot recognition.

Number
Spot Actual of Missed False Recognition
type number identified detection detection rate
Coding 1251 1244 16 9 98.0%
point
spot
Baseline 106 104 2 0 98.1%
ruler
spot
Fiber 117 117 0 0 100%
optic
spot
Total 1474 1465 18 9 98.7%
spot

The red bold line in figure 15 illustrates the variation
curve of the center coordinate deviation rate for the ES-
GDM method proposed in this paper. The results indicate
that the spot center coordinate deviation rate increases with
rising noise levels. The ellipse fitting method and the fixed
threshold grayscale center of gravity method exhibit less

Table 2. Filtering comparison experimental results.

Spot type Filtering method PSNR ENL EPI SSIM
Simulated spot ~ Mean value 35.7413 1.1222 0.7708 0.9069
Gaussian 35.9036 1.1321 0.6919 0.9238
Bilateral 37.1838 1.1230 0.8197 0.9319
Ours 37.2951 1.1228 0.8461 0.9356
Fiber spot Mean value 42.0522 0.3100 0.7670 0.9962
Gaussian 37.5368 0.3125 0.6472 0.9824
Bilateral 54.1501 0.3102 0.8748 0.9882
Ours 55.6758 0.3102 0.9283 0.9986
Coding point spot Mean value 39.0632 2.1243 0.5771 0.9778
Gaussian 36.9879 2.1367 0.3683 0.9628
Bilateral 44.2988 2.1275 0.6789 0.9885
Ours 47.6093 2.1251 0.8211 0.9935

stability, whereas the Hessian matrix-based method demon-
strates the smoothest variation curve and the highest stability,
followed closely by the ES-GDM method.

Table 3 presents the average absolute errors and time con-
sumption comparisons of the different algorithms applied to
images with Gaussian noise added at varying standard devi-
ations (1, 1.5, 2, 2.5).

Table 3 indicates that the Hessian matrix-based method
achieves the highest extraction accuracy, followed by the
ES-GDM method, which is significantly more accurate
than both the fixed threshold grayscale center of gravity
method and the grayscale center of gravity method with
Otsu threshold segmentation. The ES-GDM method has
the shortest detection time of 1.085 s, while the Hessian
matrix-based method requires the longest time of 11.074
s, which is 10.206 times longer than that of the ES-GDM
method.

Based on the experimental results presented above, the ES-
GDM method proposed in this paper effectively enables the
extraction of the spot center on the LAMOST focal plane with
both high efficiency and high precision.
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Figure 14. Schematic diagram of the simulated light spot.
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Figure 15. Experimental results of deviation rate of center
coordinates.

4.2. Coding point clustering and decoding

After extracting the coordinates of the spot centers, we con-
ducted experiments on coded spot clustering and decoding.
Figure 16 presents a comparative plot of the clustering effects
of the light spots in the LAMOST focal plane image. In the
figure, different colors represent distinct clustering categories,
corresponding to different clusters of coded spots, while the
symbol x denotes the clustering center. In our experiments,
the parameter Minpts is set to 8, the neighborhood parameter €
for DBSCAN is determined by the screening threshold ¢ cal-
culated by our algorithm, and the number of clusters for K-
Means is set to 5.

In our design (as illustrated in figure 16), a correct coding
cluster is expected to comprise eight points arranged according
to a specific geometric configuration. Figure 16 demonstrates
that, for the DBSCAN method, the purple cluster not only
encompasses the actual coding points but also erroneously
includes neighboring noise points, leading to the misclassifica-
tion of unrelated data. Similarly, issues arise with the k-means
method: the blue cluster incorporates nearby noise points, and
more critically, the green cluster incorrectly merges two dis-
tinct real clusters into one, thereby violating the design prin-
ciples. The findings indicate that neither the K-Means nor

Table 3. Spot center extraction algorithm consumption time
comparison.

Mean
absolute error
Method (pixel) Time (s)
Ellipsoid fitting method (0.059,0.045) 1.046
Hessian matrix method (0.005,0.005) 11.074
Gray scale center of (0.062,0.058) 1.085
gravity method
OTSU-based gray scale (0.027,0.035) 1.392
center of gravity
method
ES-GDM(ours) (0.018,0.012) 1.085
False clustering
(a) Original point map (b) DBSCAN
.Ri-ght clustering *
i T o
¥l
i ‘x' False clustering
(¢) Ours (d) K_means

Figure 16. Comparison of clustering effects.

Figure 17. Visualisation of decoding results.

the DBSCAN method achieves accurate clustering of coding
points, whereas the method proposed in this paper successfully
accomplishes precise clustering of coding points.

To further validate the effectiveness of the decoding
algorithm presented in this paper, we conducted decoding
experiments on the coded points in the focal plane image
across different fields of view. Figure 17 illustrates the decod-
ing visualization results for different fields of view, where (a)
represents a small field of view and (b) represents a large field
of view. The experimental results demonstrate that the method
proposed in this paper achieves fully automatic decoding of all
coded points across varying fields of view.
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(a) Perspective 1

(b) Perspective 2

Figure 19. Coding point 3D reconstruction results.

4.3. Coding point matching and 3D reconstruction

First, we use the decoding information to complete the match-
ing of all the common coding points in the image, in which
the matching results of the common coding points in the two
images are shown in figure 18 for example.

Subsequently, using the images from the front-illuminated
image set, we perform 3D reconstruction of all coding points
on the focal plane to obtain the extrinsic matrix for each
frame, along with the 3D coordinates of all coding points.
The 3D reconstruction visualizations of the coding points are
displayed in figures 19(a) and (b), which illustrate the cross-
sections in the lateral and vertical focal plane views, respect-
ively. Different colors indicate different coding points.

As illustrated in figure 19, a total of 35 coding points,
comprising 280 points, were reconstructed in this experiment,
achieving a reconstruction accuracy of 87.5%. Of these, 5 cod-
ing points were not successfully reconstructed because they
could not be decoded due to occlusion during image acquisi-
tion, resulting in reconstruction failure. The above 3D recon-
struction results of the coding points demonstrate that the
methodology presented in this paper successfully achieves the
3D reconstruction of all unobstructed coding points on the
focal plane and obtains the camera extrinsic matrix for all
frames. This establishes a foundation for the subsequent 3D
measurement of the fiber end face and baseline ruler.

4.4. Baseline ruler measurement

Given that the true value of the three-dimensional coordin-
ates of the fiber end face is unknown, and the length of the
baseline ruler is precisely measured with a measurement error

Table 4. Table of partial baseline ruler length measurements.

Baseline ruler Gage length Measuring Absolute
code number (mm) length (mm) error (mm)
1 38.700 38.684 0.016

2 39.490 39.505 0.015

3 78.190 78.188 0.002

4 908.020 907.926 0.093

5 988.050 988.136 0.086

Table 5. Results of ablation experiments against baseline scales.

Method RMSE (mm)
Fixed threshold grayscale gravity method 0.075
Our adaptive threshold segmentation-based 0.062
spot center extraction method

Adaptive weight filtering + 0.049

adaptive segmentation-based extraction

of 0.001 mm, the measured value of the baseline ruler length
can be considered as the true value. Based on this, we utilize
absolute error and RMSE as evaluation metrics, calculate the
length of the baseline ruler using the three-dimensional meas-
urement method proposed in this paper, and design experi-
ments to assess the measurement error of the method.

The measurement results are presented in table 4, indicat-
ing that the minimum absolute error is 0.002 mm, the max-
imum absolute error is 0.093 mm, the mean absolute error is
0.038 mm, and the RMSE is 0.049 mm.

To assess our spot center extraction approach, we
carried out a controlled ablation experiment, as presen-
ted in table 5. While maintaining all other processing
steps invariant, we merely modified the center extrac-
tion method and employed the RMSE measured by the
baseline ruler as the metric. Three configurations were
tested: (1) Utilizing the conventional fixed-threshold gray
centroid method for baseline measurement, resulting in an
RMSE of 0.075; (2) Solely implementing our spot cen-
ter extraction based on adaptive threshold segmentation,
reducing the RMSE to 0.062; (3) Simultaneously applying
adaptive weight filtering and extraction based on adaptive
threshold segmentation, attaining the lowest RMSE value
of 0.049.

As quantitatively demonstrated in table 5, each proposed
technique contributes significantly to the reduction of errors,
with the synergistic combination producing the optimal per-
formance. These results not only confirm that our method
achieves the lowest measurement error for baseline ruler meas-
urement, but also provide direct evidence that the proposed
techniques effectively reduce spot center extraction error.
The progressive improvement observed through the stages of
the ablation experiment conclusively validates the research
approach developed in chapter 2.1.
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Table 6. Table of fiber end-face 3D measurement results.

Number X (mm) Y (mm) Z (mm)
1 210.451 345.532 558.737
2 210.530 318.045 558.250
3 186.873 331.574 559.408
4 517.280 332.380 525.508
5 493.758 317.517 524.701
6 513.350 302.905 524.087
7 400.242 235.162 541.998
8 367.724 226.484 542.630
9 396.742 201.529 541.786
10 529.374 107.010 480.033
11 536.243 93.900 478.043
12 518.015 83.100 479.393
13 215.390 106.672 543.839
14 201.827 82.060 545.425
15 254.462 85.600 544.479

® Coding point
® Fiber

Figure 20. Visualisation of fiber 3D reconstruction.

4.5. Fiber end-face position measurement

After obtaining the global scale factor, we scale the overall 3D
model, enabling the 3D measurement of the fiber end face pos-
ition. The results are presented in table 6, along with the cor-
responding 3D visualization results of the coding points shown
in figure 20.

To further validate the superiority of the 3D measurement
method proposed in this paper and its contribution to efficiency
improvement, we compare and analyze it with the traditional
SFM method in terms of measurement error and efficiency.
The key methods employed in various components are presen-
ted in table 7. In the measurement error assessment, we con-
tinue to use the RMSE of the baseline ruler measurement as the
evaluation metric to compare the measurement error of the two

methods. In the efficiency assessment, operational efficiency
is evaluated based on the total time required to measure 15
fibers. The results are presented in table 7.

The experimental results presented in table 7 indicate that
the SIFT-based feature extraction method exhibits a signi-
ficant mis-matching issue, adversely affecting the accuracy
of the camera’s extrinsic matrix in the solution and hinder-
ing its ability to meet high accuracy requirements. In con-
trast, the coding point feature-based extraction and matching
method focuses on specific points, effectively reducing mis-
matching and thereby improving the accuracy of the camera
pose estimation. Additionally, it demonstrates strong compu-
tational efficiency, allowing for faster processing speeds in
practical applications.

5. Conclusion

In response to the urgent demand for high-precision position-
ing of the fiber end face in the LAMOST closed-loop fiber pos-
itioning system, this paper proposes a three-dimensional meas-
urement method for LAMOST fiber end faces under front and
back illumination. This method addresses the errors associ-
ated with previous two-dimensional measurement techniques
that approximated the curved focal plane of LAMOST as a
flat surface. First, this paper analyzes the gray scale distri-
bution characteristics of the acquired spot images and pro-
poses an improved gray scale distribution spot center extrac-
tion method ES-GDM. This method accurately identifies and
classifies the spots and extracts their centers, even in complex
backgrounds. Compared to the traditional grayscale center of
gravity method, ES-GDM reduces spot center extraction error
by 34.7%. Next, to address the issue of insufficient texture fea-
tures in fiber optic images that make matching difficult, we
enhance the matching process by introducing coding inform-
ation. Based on the design principles of coding points, we
developed a DMCP-CPM strategy capable of fully automatic
recognition and decoding of all coded spots across different
fields of view, without the need for parameter settings. Finally
we propose a 3D reconstruction method based on fused cod-
ing information SFM. This method gradually incorporates new
viewpoint images to derive the camera poses corresponding to
different frames, which are then used for the 3D reconstruc-
tion of all fiber end faces. Additionally, a rigorously measured
baseline ruler was established on the focal plane to ensure the
accurate physical scale of the recovered measurements. This
baseline scale is incorporated into the reconstruction process
to calculate the scale factor.

We developed the measurement system and conduc-
ted experimental validation at the National Astronomical
Observatory of China. Qualitative experiments show that the
3D measurement methodology proposed in this paper achieves
3D reconstruction of 87.5% of the coding points and all fiber
points on the focal plane, although some coding points cannot
be reconstructed due to occlusions.
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Table 7. Comparison table of key methods between traditional SFM and our method.

Method Feature point extraction Feature point matching 3D reconstruction RMSE (mm) Time (s)
Traditional SFM SIFT SIFT Incremental SFM 1.232 98.685
Ours ES-GDM DMCP-CPM Fusion-coded SFM 0.049 16.760

The quantitative experimental results indicate that the
average absolute error for the baseline ruler 3D measurement
is 0.049 mm, while its speed is improved compared to the
traditional SfM method. The three-dimensional measurement
method of focal plane fiber end-face position proposed in this
paper is of great significance, and it can also provide a ref-
erence for the high-precision measurement of fiber end-face
position in similar survey telescopes.
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