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Abstract—A parallel binocular stereo vision system and its 

application to dimensional measurement is introduced in this 

paper. The proposed system is established by controlling a single 

PTZ (pan-tilt-zoom) camera linear motion on a one dimensional 

precision displacement platform. To achieve accurate 

measurement results, an improved matching algorithm called as 

DC-SURF (Distortion Compensated-Speeded Up Robust Feature) 

by using adaptative filtering in terms of the image distortion 

during generating scale space is presented. Furthermore, the 

classic eight-point algorithm and the designed zoom strategy for 

PTZ camera are adopted for the measurement. The experimental 

results show that the proposed matching algorithm has better 

performance than other two classic matching algorithms over 

distorted images. Furthermore, the experiments demonstrate that 

without any reference materials the stereo vision dimensional 

measurement system proposed in this paper can be successfully 

applied to human height measurement with high precision. The 

results indicate a potential possibility of our approach to be used 

in other computer vision applications. 

Keywords—stereo vision; PTZ camera; adaptative filtering; 

zoom strategy; dimensional measurement 

I.  INTRODUCTION 

Recently the high-accuracy dimensional measurement is 
playing an important role in a variety of computer vision 
applications, for instance, human-computer interface, biometric 
authentication, robot vision, etc. Current dimensional 
measurement techniques can be divided into two main types: 
active and passive. Generally, active measurement adopts laser 
scanning or structure illumination, which will not be 
convenient in many applications. However, passive 
measurement techniques overcome this deficiency by requiring 
simple equipment [1]. In addition, passive measurement could 
be achieved based on monocular vision, binocular stereo vision 
or multi-view stereo vision, a monocular vision based object 
dimensional measurement method is presented in [2], which 
requires a known size object to calculate the size of the 
measured target. Compared to monocular vision, binocular 
vision based method can obtain accurate results without any 
prior knowledge, e.g., a 3D measurement method proposed in 
[3] can be used to measure the pins’ positions in production 
lines without prior information. To utilize the advantages of 
binocular stereo vision and simplify the calibration of the 
camera for binocular vision , a structure model of single 

camera binocular vision sensor using mirrors is proposed in [4], 
which is equivalent to the traditional binocular vision sensor 
and could obtain two virtual images reflected by two mirrors of 
the object in a single shot for further measurement, yet the 
disadvantage of this system is that the installation of the 
mirrors and the calibration of the angel between the mirrors is 
complicated. From above analysis, in this paper, we established 
a parallel binocular stereo vision system based on a single PTZ 
(pan-tilt-zoom) camera, which is constructed by controlling a 
single PTZ camera’s linear motion on a one-dimensional 
precision displacement platform during the process of 
obtaining 3D coordinates for further measurement.  

On the other hand, in the process of the passive 
measurement based on stereo vision, image matching is crucial 
which partly determines the accuracy of the overall procedure. 
Generally, matching techniques are classified into three major 
types: pixel-based, area-based and feature-based [5,6]. A pixel-
based method [7] implements the matching at each pixel with 
only the intensity of a single pixel. Area-based algorithms [8,9] 
find correspondences based on similarities between areas in the 
right and left images, which assumes that disparities within a 
rectangular window centered at a pixel are constant. A feature-
based method known as SIFT (Scale-invariant feature 
transform) [10] and its improved version SURF (Speeded Up 
Robust Features) [11] which uses integral images and has less 
dimensions of the descriptor can both provide invariance to 
common image transformations such as scale, rotation, 
illumination, and minimal viewpoint changes. Unfortunately, 
the wildly used SIFT and SURF approaches are not invariant to 
the radial distortion present in images acquired by cameras. 
Addressing this problem, we proposed an improved version for 
SURF that could compensate the distortion in the images and 
achieve superior matching results. Hence, based on our 
superior matching results, we can acquire a better measurement 
results by means of the proposed parallel binocular stereo 
vision system and the classic eight-point algorithm [12,13]. 

The remainder of the paper is organized as follows: Section 
II summarizes the system establishment and the measurement 
process. Section III describes our developed matching 
algorithm. In section IV, an overview of eight-point algorithm 
is given and the zoom strategy for measurement is presented. 
Section V shows experiment results and the analysis. Finally, a 
conclusion is given in Section VI. 



II. MEASUREMENT SYSTEM SETUP 

 To accomplish the automatic dimensional measurement, we 
establish a parallel binocular stereo vision system based on a 
single PTZ camera. The measurement process consists of four 
steps and is shown in Fig. 1. 

A. PTZ Camera Self-calibration 

Firstly, we calibrate the PTZ camera through the method 

presented in [14], which doesn’t require 2D or 3D calibration 

target and only needs to capture two images of the same scene 

in orientation 1 and orientation 2 after a relative rotation (pan 

and tilt). Two principle equations are listed as follows 
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Here h is a column vector collecting the nine elements of the 

homography H between the two images captured in two 

orientations, η is distortion coefficient based on division 

distortion model [15], D1, D2, D3 are 2×9 matrixes related to 

the distorted image coordinate and the detailed expression is 

presented in [14]. Hence, the relation between intrinsic matrix 

K and homography H can be represented as 
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In (2), Q3,  Q2, Q1 are Givens rotations [16] which can simplify 

the calculation, f is focal length of the camera, α is the aspect 

ratio and (u0,v0) is the coordinate of principle point. Hence, the 

intrinsic parameters (α,f,u0,v0,η) of the PTZ camera can be 

obtained by solving (1) and (2). 

B. Stereo Vision System Setup 

In our system, HIWIN KK50 ball screw displacement 

platform, which can be driven by permanent-magnet AC servo 

motor control system for linear motion, with absolute 

positioning accuracy ±0.01mm and repeated positioning 

accuracy 0.02mm is used to hold up the single PTZ camera. 

The value of the linear displacement of the mounted single 

PTZ camera is the length of the baseline in the established 

binocular parallel stereo vision system. In our system, the 

precise linear displacement of the camera is proportional to the 

angular displacement of Mitsubishi HF-KP13 servo motor 

controlled by Mitsubishi PLC. Thus using PLC programming 

to control the displacement-distance of displacement platform, 

it improves the degree of automation and displacement 

accuracy, i.e., the accuracy of the baseline in our stereo vision 

system. We can capture two images on two endpoints of the 

baseline for subsequent matching and measurement. 
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Fig. 1. Flow diagram of measurement process. 

C. Improved Matching Algorithm 

The lens manufacture error and the components assembly 

error of PTZ camera can lead to distortion in captured images. 

However, the state-of-the-art methods SIFT and SURF suffer 

a considerable deterioration for a certain amounts of distortion, 

which has a negative impact in the matching performance. 

Considering our demand of high accuracy real-time 

measurement, we proposed an improved stereo matching 

algorithm which is based on SURF and compensates the 

distortion in images by implementing adaptative filtering 

during generating the scale space to acquire accurate matching 

results. 

D. Measurement Algorithm 

Based on the above steps, we adopted the classic eight-

point algorithm [12,13] to estimate the 3D coordinates of the 

measured object and further to calculate the dimension of the 

object, in addition, we design the zoom strategy of the PTZ 

camera for high-accuracy measurement. 

III. IMPROVED SURF UNDER RADIAL DISTORTION 

Despite of the fact that the SURF algorithm is not invariant 

to lens distortion, its operation efficiency is of great 

significance in real-time measurement. In order to obtain more 

accurate measurement results, we improved original SURF by 

using adaptative box filters during building the scale space 

over distorted images, dubbed as DC-SURF (Distortion 

Compensated-Speeded Up Robust Feature), which will be 

described in detail. 

A. Division Model for Radial Distortion 

In our method, we adopt a first-order division model [15] to 
represent the effect of lens distortion in images. The degree of 
distortion can be quantified by a distortion parameter η 
(generally, η < 0), and the distortion center is assumed to be 
closely approximated to the image center. Let image center be 
the origin of the image coordinate system in images, pu = (u,v)T 
is the coordinates in undistorted image, pd= (x,y)T is the 
coordinates of corresponding point in distorted image, hence 

 2/ (1 )u d dp p r    (3) 

Here η is the distortion parameter, rd is the distortion radius 

which denotes the distance from the distorted point to the 

image center and rd = || pd ||2, the corresponding undistorted 

radius ru = rd /(1+ηrd
2). 

B. Adaptative Filtering and Scale Space Generating 

We introduce a new method for image adaptative filtering 

which accounts for the distortion based on the above division 

model. The purpose is to generate a scale space which is equal 

to the one that would be obtained by filtering the image in the 

absence of distortion, followed by applying the distortion over 

all the layers of the SURF pyramid. To achieve our objective, 

we implement an implicit distortion correction method by 

adapting the convolution kernel that is used over the distorted 

image during the scale space generation. Due to the use of box 

filters and integral images [11], we apply box filters of any 

size at exactly the same speed directly on the original image 



and the scale space is generated by up-scaling the filter size 

without changing the image size. The output of the 9×9 box 

filter is considered as the initial scale layer, to which we will 

refer as scale σ = 1.2 (approximating Gaussian derivatives 

with σ = 1.2). The following layers in Fig. 2 are acquired by 

filtering the original image with box filter whose size is 

gradually increasing, the number of octaves is set to be 4 and 

the box filter size in each layer is rounded to the nearest 

integer. Let (h,k)T be the pixel coordinate in each layer to be 

convolved, the scale space considering distortion in image is 

given by 
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The expression can be rewritten by transforming the Gaussian 

convolution kernel G by G’ 
 2 2' ( , ;(1 ) ), ' ( , ;(1 ) )G G x y r D D x y r s        (5) 

Here r is the corresponding distortion radius in each layer, D’ 

is the box filter kernel approximate to the adaptative Gaussian 

kernel G’, s is the size of box filter. While in the original 

SURF detection in the image is filtered using standard 

isotropic box filter with standard size s, in our method the 

standard size can be represented as (1+ηr2)s that decreases as 

a function of the image radius. The convolution kernel follows 

the deformation caused by distortion, and emphasizes the 

contribution of pixels increasingly closer to the convolution 

point while the filter moves far from the center of distortion. 

C. Distortion Compensated Speeded Up Robust Feature 

As described earlier, the novel DC-SURF algorithm could 
be accomplished by the following steps 

1) Fast interest point detection: Select the location and 

scale of  interest points according to the determinant of the 

Hessian matrix  in each pixel. 

2) Build the novel scale space: Implement the adaptative 

box filtering to buid the scale space accounting for distortion. 

3) Interest point descriptor: In a first step, find interest 

points in scale space by applying non-maximum suppression 

in a 3×3×3 neighborhood; in a second step, construct a 

circular region around the detected interest points and 

compute the principle orientation by using Haar wavelet 

theory; in a third step, construct the DC-SURF descriptor 

vector which has a length of 64 by extracting square regions 

around the detected interest points.  

 
Fig. 2. Scale space after adaptative filtering (𝜀’ = 1+ηr2) 

4) Feature descriptors matching: In two corresponding 

images, calculate the Euclidian distance to all feature 

descriptors in the second image for every interest point in the 

first image, if the ratio of the nearest neighbor to the second-

nearest neighbor is smaller than a predetermined threshold, a 

match is considered to be correct. 

We compare the proposed DC-SURF algorithm with 

SURF and SIFT in INRIA datasetsd to validate its 

performance in section V. 

IV. MEASUREMENT 

Based on the procedures mentioned in previous two 
sections, we subsequently execute dimensional measurement 
through estimating the fundamental matrix optimized by 
RANSAC [17] and deducing the formula of dimension 
calculation, during which we adopt classic eight-point 
algorithm that reconstructs a scene from two projections firstly 
proposed by Longuet-Higgins in [12] and enhanced by Hartley 
in [13]. 

A. Eight-point Algorithm  

The model of our parallel binocular vision system is 

illustrated in Fig. 3. Let O-XYZ be the world coordinate 

system, which is coincide with the camera coordinate system 

of the left camera, the visible point P(X,Y,Z)T in the scene is 

projected onto the image planes, resulting in points pl(xl,yl)T 

and pr(xr,yr)T. The steps of eight-point algorithm are explained 

as follows 

1) Select points and estimate the fundamental matrix: 

Given a set of point correspondences in homogeneous 

coordinates {pl’↔pr’}i, i=1,2,…,8, between two uncalibrated 

perspective views of a rigid scene, the objective is to estimate 

the 3×3 fundamental matrix F satisfying the epipolar 

constraints 

 ' ' 0T

r lp Fp    (6) 

Where pl’ and pr’ are the normalized coordinates of pl and pr, 

the F should be of rank-2 because of the epipolar geometry 

constraint that all epipolar lines must intersect at a point. In 

order to obtain optimal measurement results, we implement 

RANSAC algorithm to estimate the accurate fundamental 

matrix during this step. 
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Fig. 3. Binocular parallel stereo vision system. 



2) Estimate the rotation matrix and translation vector 

between two cameras: Fundamental matrix and essential 

matrix describe the position, orientation and properties of the 

two cameras in stereo vision, through transforming the 

fundamental matrix to essential matrix by (7), it is convenient 

to obtain the rotation matirx R and translation vector t between 

two cameras after solving (8) by using a SVD method 

proposed in [18] 

 T

r lE K FK   (7) 

Kr and Kl are the intrinsic parameters matrix of two cameras in 

(2), in our system Kr = Kl. 

 E RS   (8) 

Here S is a 3×3 skew-symmetric matrix of t. 

3) Calculate the 3D coordinates and dimension of object: 

The 3D world coordinates of the point on object is given by 
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Where fl and fr are the respective focal length of two cameras 

and fl = fr. Finally, through selecting two points on the object 

and calculate the distance between them, we can accomplish 

the dimension measurement 
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In (10), (X1,Y1,Z1)T and (X2,Y2,Z2)T are the 3D world 

coordinates of the chosen points on object. 

B. PTZ camera zoom strategy during the measurement 

The image size of the measured object partly determines 

the measurement accuracy. Therefore, it is crucial to formulate 

a zoom strategy under which the PTZ camera can capture the 

measured object with a proper size in image plane after zoom 

operation. We define a variable to represent the ratio of the 

object’s image size to the overall image size as follows 

 % 100 /c iS S  （ ）   (11) 

Here, δ is the ratio, Sc is the measured object’s image size 

decomposed in the linear direction decided by the two select 

points, Si is the overall image size decomposed in the 

corresponding linear direction. By setting two thresholds tmax 

and tmin, we implement the zoom operation to satisfy the 

condition tmin < δ < tmax so that we can capture images with 

apposite measured object’s image size for dimensional 

measurement. These two thresholds are determined in terms of 

the measurement data in the next section. 

V. EXPERIMENT AND ANALYSIS 

In this section, we firstly present results comparing DC-
SURF to standard SIFT and SURF in INRIA datasets. 
Secondly, we summarize the dimensional measurement results 
to validate our algorithm. 

A. DC-SURF Performance Evaluation 

Recall–Precision is one of the most prevalent metrics for 

evaluating detection tasks [19], we will use Recall–Precision 

to evaluate the matching performance of the DC-SURF 

algorithm developed. 

The recall is the proportion of the number of the correctly 

matched interest regions to the number of the corresponding 

interest regions between two images of the same scene 

 (# ) / (# )recall correct matches correspondences   (12) 

1-precison is the proportion of the number of the false 

matches to the total number of matches 

 1 (# ) / (# )precision false matches total matches   (13) 

We generate the recall vs. 1-precision graphs for our 

experiments by varying the threshold for each descriptor. 

The dataset for evaluation downloaded from INRIA 

datasets contains image sequences with different geometric 

and photometric transformations, including viewpoint change, 

zoom and rotation, blur, light change. According to the 

problems our method focuses on, two images from each 

sequence are chosen and distorted by using (3) (see as Fig. 4 

(a)-(f)). Specifically, the DC-SURF is compared with two 

existing algorithms in the literature: 1) the standard SIFT; 2) 

the standard SURF. Fig. 5(a)-(f) exhibit the results of the 

matching experiments under various transformations. In Fig. 5 

(a)-(b) the performance is measured for distorted images with 

viewpoint change, we can observe that DC-SURF is 

dramatically better at handling distorted images for almost all 

values of 1-precision. Fig. 5 (c)-(d) demonstrate the influence 

of zoom and rotation in boat and bark scene under distortion, 

results clearly show that DC-SURF dominates the other two 

algorithms. Finally, we can see from Fig. 5 (e)-(f) that while 

all of the representations are well-suited to capturing these two 

variations, the performance of DC-SURF is slightly better in 

the case of blur and light change. As a result, we can draw a 

conclusion that compared to classic SURF and SIFT, DC-

SURF algorithm has superior robustness to distortion. 

 

(a)                                    (b)                                 (c)                                   (d)                                    (e)                                    (f) 

Fig. 4. Distorted version of images from the INRIA datasets for evaluation: (a)wall+(b)graffi: viewpoint change; (c)boat+(d)bark: zoom+rotation; (e): blur; (f)leuven: 
light change. 



 

(a)                                                                                   (b)                                                                                    (c) 

 

(d)                                                                                   (e)                                                                                   (f) 

Fig. 5. Illustration of the performance of Recall vs. 1-precision curves: (a) and (b), viewpoint change; (c) and (d), zoom + rotation; (e) image blur; (f) light change. 

 

 

(a)                                           (b) 

Fig. 6. Two camera sample images of different target: (a) the image for 
dimensional measurement; (b) the image for height measurement. 

B. Dimensional Measurement Experiment 

 The parameters of the parallel binocular stereo vision 
system are given as follows: PTZ camera used in system is 
SONY EVI-D70P, length of the system baseline is 200mm 
(theoretically, there is a negative correlation between baseline 
length and measurement error. In our experiments, the selected 
baseline length can guarantee relatively accurate measurement 
results), resolution of image obtained from PTZ camera is 
320×240 pixels, the size of each pixel is 6.5μm×6.5μm, the 
focal length of PTZ camera can be adjusted according to the 
zoom strategy. Thus we can capture two images by the PTZ 
camera on two endpoints of baseline and extract relevant points 
on object manually to complete dimensional measurement. 

 To form an appropriate zoom strategy during measurement 
for PTZ camera, we firstly choose a planar target with standard 
grid size as the measured object. We select appropriate number 
of squares in Fig. 6 (a) for dimensional measurement with 
every square size is 30mm×30mm, and the distance between 
the object and the camera is increased from initial 1110mm to 

different integral values shown in Fig. 7. Secondly, we apply 
our zoom strategy summarized from dimensional measurement 
to the human height measurement to validate the proposed 
algorithm. Fig. 6 (b) displays an images collected by PTZ 
camera for height measurement and the man in the picture has 
a standard height of 165cm. 

 The object dimensional measurement results at several 
distances are illustrated in Fig. 7, in which we increase the 
focal length of camera to obtain larger ratio δ and estimate the 
measurement error at every distance. We can see that the 
measurement error has obvious negative correlation with the 
ratio δ in any positions of the object, which indicates we can 
reduce error by increasing the focal length of PTZ camera to 
obtain a larger ratio for measurement. 
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Fig. 7. Dimensional measurement results after PTZ camera zoom operation (in 
figure legend the letter D is the distance between object and left camera). 
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TABLE I. HUMAN HEIGHT MEASUREMENT RESULTS ( REAL HEIGHT H0=1650.00mm ) 

Distance(mm) 4110 4710 5310 5910 5310 

Focal Length(mm) 2.53 3.01 3.45 3.45 3.79 

Measured Height(mm) 1644.37 1655.12 1655.17 1655.75 1655.17 

Measurement error(%) 0.34 0.31 0.31 0.35 0.31 

Ratio δ(%) 60.83 64.58 64.17 57.50 65.00 

 

 It can be observed from Fig. 7 that when the ratio δ is 
higher than 20%, the dimension error is below 1%. 
Furthermore, we conclude from our experiment that it will be 
difficult to match the public areas in two different view from 
endpoints of the baseline for the same measured target if the 
ratio δ is too large. In order to balance the matching difficulty 
with measurement accuracy, we set the threshold tmin is equal to 
40% and the threshold tmax is equal to 65%, which is testified in 
Fig. 7 that dimension error is approximately between 0.3% and 
0.5% as long as the ratio δ satisfies the condition tmin < δ < tmax. 
For the objective to attain results with higher accuracy, we 
stipulate the zoom strategy making the ratio in (11) near 65% 
after zoom operation in our system. 

 Based on the above zoom strategy, we implement the 
human height measurement by using our developed parallel 
binocular stereo vision system. The results are listed in Table I, 
from which we can summarize that when the ratio is near 65% 
(from 57.5% to 65% in our experiment), we can accomplish 
accurate height measurement with the errors staying below 
0.35% by using our system and the proposed algorithm. 

VI. CONCLUSION 

 In this paper we established a parallel binocular stereo 
vision system for automatic dimensional measurement. During 
the measurement procedure, an enhanced stereo matching 
algorithm accounting for image distortion is presented and the 
zoom strategy used for high-accuracy measurement is 
formulated. The performance of the improved matching 
algorithm in distorted images had been verified to be superior 
to standard SIFT and SURF algorithms in the INRIA dataset. 
Furthermore, the high precision results of the dimensional 
measurement confirmed that our system could be surely 
applied to field of computer vision application. 
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