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Abstract The research of this paper investigates a practical
intelligent tracking teaching system, addressing the problem
of teacher detection and tracking via monocular active vision
in real time. The split lines and position-based visual servo
rules are created to realize the robust and stable tracking,
which is designed to keep the tracked teacher in the mid-
dle of image with a fixed size by automatically controlling
a pan/tilt/zoom monocular camera in either rostrum region
or other regions in the classroom. Face tracking in rostrum
region is initiated by a face detector based on Adaboost fol-
lowed by a novel long-term tracking algorithm named as
informative random fern-tracking-learning-detection (IRF-
TLD), which has advantages for its high accuracy and low
memory requirement using real-valued feature and Gaussian
random projection. Moreover, Gaussian mixture model can
be automatically started to detect the teacher’s movement
when face tracking fails or stand-up students are detected.
Experimental results on many benchmark sequences, which
include various challenges for tracking, such as occlusion,
illumination and pose variations, and scaling, have demon-
strated the superior performance of the proposed IRF-TLD
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methodwhen comparedwith several state-of-the-art tracking
algorithms. Extensive experiments in a series of challenging
real classroom scenarios also demonstrate the effectiveness
of the complete system.
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fern · Monocular active vision · Intelligent tracking teaching
system

1 Introduction

With the recent advance in hardware and algorithms, com-
puter vision systems, employed in traditional classroom, are
changing the mode of modern education. Using cameras to
automatically record the process of teaching as multimedia
materials has led to a convenient and cost-effective way of
learning and education. This approach visualizes the teaching
state data, teaching operation process and teaching quality
assessment. To develop the aforementioned intelligent track-
ing teaching system (ITTS), robust tracking of the teacher
is essential; but the robust tracking problem remains as an
open problem. To achieve an effective ITTS, the following
requirements must be met:

(a) It should be able to track the teacher in real time, and
robustly handle illumination changes and occlusions
caused by other faces or objects with skin-colored sur-
face.

(b) It should contain a smooth camera motion and give a
close-up recordingwhen the teacher emphasizes the con-
tent on the blackboard or when a student stands up.

(c) It should be able to automatically choose the highest
confidence response and switch the field of view to the
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region of interest to ensure no view obstruction in the
tracking process.

(d) It should be able to achieve the aforementioned functions
with a minimum number of cameras to reduce the cost
of hardware.

To meet the above requirements, various approaches to
a practical ITTS have been proposed in the last few years.
Tsuruoka [1] describes a distance lecture support system
using two cameras: one is a fixed camera and the other
is an active camera. The image taken by a fixed camera
is used to determine the parameters (the angles of pan/tilt
and the zooming rate) of an active camera which is used
for recording. Meanwhile, the fuzzy camera control method
based on the behavior recognition of a lecturer which deter-
mined from the lecturer’s silhouette is proposed. Another
face tracking system for Multimedia Teaching is proposed in
[2], which uses an active camera with pan–tilt function and
combines the AdaBoost face detection with CamShift track-
ing algorithm.Wulff [3] develops an open-source framework
for scene analysis in lecture recording scenarios, including
a pan–tilt camera and a webcam that gets an overview of
the room. Moreover, a scene segmentation technique using
motion cues and background modeling has been imple-
mented in its system. Wang [4] presents a monocular active
vision module to track teachers’ movement in real-time.
Face tracking is initialized by robust face detection fol-
lowed with the Expectation Maximization (EM) algorithm
[5] based on HSV color space and prediction of face posi-
tion.

For the design of our ITTS, we explore both the robust-
ness and smoothness in face tracking and use pan/tilt/zoom
(PTZ) camera heading to autonomously switching mecha-
nism between two operational functions, namely, teacher
tracking and stand-up student detection. Our scheme is
related to the latest work described in [4], but with sub-
stantial algorithm advantages: the method in [4] relies on
skin color of the face based on Hue channel from HSV
color model, but it faces the challenge of locating only the
skin-color area which is easily distracted by other faces
and skin-like color areas in the scene. To address these
issues, we present a novel tracking method named as infor-
mative random fern-tracking-learning-detection, which is
inspired by tracking-learning-detection (TLD) [6] and the
visual tracking with randomly projected ferns presented in
[7].

The rest of this paper is organized as follows. In Sect. 2,
we give an overview of the proposed ITTS. Sect. 3 describes
the relevant research works. The proposed technical para-
digm and method are detailed in Sect. 4. Section 5 shows
the experimental results, followed by the conclusion in
Sect. 6.

Fig. 1 Overview of our ITTS

2 System overview

Based on the aforementioned requirements for ITTS, we pro-
pose an effective and efficient way to build our ITTS with
two PTZ cameras. One of them is denoted as Teacher Camera
which is responsible for tracking the teacher during lectur-
ing, while the other one is Student Camera which is applied
to observe the activities of students. The configuration of
our system in space is shown in Fig. 1. The Teacher Camera
installed in the rear of the classroom supports multiple preset
positions that help to track the teacher in different regions.
The Student Camera placed in the front of the classroom
covers students with a panoramic view as the initialization.

The architecture for the hardware and software of our sys-
tem are illustrated in Fig. 2. Four modules, including image
capture, camera control, user interface and active tracking,
can run “concurrently” on a PC as multiple threaded tasks.
An active trackingmodule with two threads: teacher tracking
and stand-up student detection can be automatically triggered
to execute the ITTS function. To achieve teacher tracking
during the whole teaching process, we divide the classroom
into three areas: Rostrum area (red color region in Fig. 1),
Transition area (blue color region in Fig. 1) and Student area
(gray color region in Fig. 1). Besides, when a student stands
up to answer questions, the student camera will switch to the
student with a close-up operation. In this paper, we mainly
explore the tracking and detection of the teacher motion.

3 Related work

For active tracking based on the PTZ cameras, we review
related literatures from the following two aspects.

3.1 Visual tracking

Although visual tracking can be formulated under different
settings, we focus on the single target long-term tracking
in this paper. In general, tracking algorithms can be catego-
rized as either generative models or discriminative models.
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Fig. 2 Structure of our ITTS (a hardware structure, b software structure)

Generative models, which mainly consist of holistic tem-
plates and local templates, typically assume a generative
process of the appearance of the target and search for the
most probable candidate in the video. The holistic templates
as one most straightforward approach, can be used to track
the target by minimizing mismatch between the target tem-
plate and the candidate patch [8,9]. To better account for
appearance changes, subspace-based models have been pro-
posed [10,11]. Recently, numerous tracking approach based
on local sparse representations [12,13] have been proposed
to handle occlusion and improve the run-time performance.
Generally, the purely generative models do not take advan-
tage of background information. Thus, they are easy to drift
away from the target. For discriminative models, tracking
is treated as a binary classification problem which aims to
distinguish the target from the background. Numerous classi-
fiers have been adopted for target tracking, such as structured
output SVM [14], boosting [15], multiple instance learn-
ing [16] and deep learning [17]. Besides, some methods
exploit correlation filter for the target or context [18,19].
Their primary advantage is that only fast Fourier transforms
and several matrix operations are needed, making them very
suitable for real-time applications.

Recent benchmark studies show that the top-performing
trackers, especially some aiming to develop increasingly
robust “longer” tracking, are usually discriminative models
[6,14] or hybrid ones [13]. The Tracking Learning Detec-
tion (TLD) [6] method, in which tracking and detection
are independent processes that exchange information via
learning, was designed for long-term tracking of arbitrary
objects with necessary drift resistance and redetection after
full occlusions.Moreover, TLDdeveloped anovel P–N learn-
ing method. Positive and negative examples are learned
according to the disagreement of these two components,
improving further detection performance. In addition, signif-
icant advances in long-term single-object tracking research
have been made over the past few decades. In the context of
faces, face detection which is essential in long-term track-

ing, has been extensively studied, and an off-the-shelf face
tracker based on the detection-learning method is available
[20]. For a much better systematic review and comparison of
tracking literature as well as face detection and recognition,
please refer to the recent benchmark [21] and review articles
[22,23].

3.2 Camera control in active vision

An active vision system is one that can automatically interact
with its environment by altering its viewpoint rather than pas-
sively observing it, and by operating on sequence of images
rather than on a single frame. To investigate the environment
more effectively, numerous studies have been carried to deal
with the control problem in the active vision system.

Most PTZcamera controlmethods fall into twocategories:
PID or image position-based approach. PID methods typi-
cally use PID control scheme for minimizing the position
error to keep the target in the center area of the camera’s
view field. Some related works have been published. Haj et
al. [24] designed two PID controllers: one is used to control
the pan–tilt operation, and the other for the zoom operation,
which is used to reactively track the object at a constant image
velocity while simultaneously maintaining a desirable target
scale in the image. In [25], an increment digital PIDcontroller
with dead zone is applied in an active vision condition where
camera and object may move simultaneously. However, the
method is quite fragile in a complex environment. On the
other hand, image position-based method usually assumes
that the camera system can achieve stable tracking at each
frame. For this approach, to make the target appear on the
center of image, the displacement from the center of tar-
get to the image center is usually used to design a control
scheme. Chen [26] proposed an active disturbance rejection
control (ADRC) method to improve the control performance
of the pan–tilt camera. This method uses two ADRC con-
trollers working in parallel for a pan–tilt camera and only
needs the deviation of target image centroid and image cen-
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ter. Although this method has high accuracy, it is not able to
make Pan/Tilt as fast as the tracked moving target. Bernardin
[27] presented an automatic system for monitoring indoor
environments using a PTZ camera. Meanwhile, the fuzzy
controlling scheme, in which the input is the target image
position displacement and the output are the required pan,
tilt and zoom speeds for the camera, allows for smooth track-
ing of moving targets. Their approach does, however, need
to continuously update the camera parameters using rotation
and zoom information.

In summary, many approaches with the state-of-the-art
algorithms have been proposed to follow objects with an
active camera. However, some approaches need highly con-
figured devices while our goal is tracking via a general
commercial PTZ camera with limited support.

4 Component of Our ITTS

As was stated in Sect. 2, our system consists of four mod-
ules: image capture, camera control, user interface and active
tracking. The image capture module is responsible for cap-
turing video sequences from the teacher camera and student
camera, respectively, while the camera control module is
used to update the PTZ parameters of the teacher camera
and student camera. The user interface is GUI based and
enables users to observe the actual situation of teaching. The
active tracking provides the location information of the tar-
get. Multiple threaded tasks are employed in this module
which includes the teacher tracking thread and stand-up stu-
dent detection thread. For the former, the algorithm is divided
into two parts: (i) face detection and long-term tracking, (ii)
body detection with Gaussian mixture models (GMM) [28].
For the latter, our system uses the same GMM algorithm to
achieve the stand-up student detection.

In the following section, we discuss in detail the active
tracking for teacher and camera control modules.

4.1 Teacher tracking initialization

To perform real-time teacher tracking, the teacher is asked
to stand in a predetermined region facing to the teacher cam-
era at the beginning; our system is designed to acquire the
teacher face as the selected target in 2–3 s. The real-time face
detection framework we adopt in this initialization stage is
proposed in [29], which uses the Adaboost algorithm to gen-
erate an effective cascade of classifiers based on Haar-like
features. The face detector is a filter that receives a 24 × 24
pixel region of the preprocessed image and generates an out-
put of 1 or 0, signifying the positive and negative samples,
respectively. It runs at 15fps on 320 by 240 pixel image and
can detect faces that tilt up to about ±15◦ in plane and about
±45◦ out of plane.

4.2 Teacher tracking

When the teacher’s face is detected, it is tracked by our
tracking approach called IRF-TLD, which decomposes the
long-term face tracking task into tracking, detection and
learning. The target is followed by a tracker from frame to
frame and simultaneously learned so as to build a detector
that localize all appearances observed so far. We adopted
the tracker and learning method from the original TLD [6],
but different from the original detector which is consisted of
three stages: (i) patch variance classifier, (ii) standard ran-
dom fern classifier, and (iii) nearest neighbor classifier, two
improvements have been made in this paper w.r.t. TLD: (i)
An adaptive detection strategy with a belt region which is
determined by the center ordinate of the teacher’s face is
developed to narrow the detection region. (ii) Instead of the
binary comparison in the standard random fern, the more
informative real value from the subtraction is used. More-
over, a random projection is utilized to map the value of each
fern derived from feature value to a parametric distribution,
specifically, Gaussian distribution, inwhich the classification
is done. With these measures, we can achieve the benefits of
both high accuracy and low memory requirement.

Our whole IRF-TLD tracking approach is summarized in
Fig. 3. It works as follows:

4.2.1 Tracker

Asdescribed inTLD, the tracker estimates the target’smotion
between consecutive frames under the assumption that the
frame-to-frame motion is limited and the target is visible. A
grid of 10*10 points inside the target box from the previ-
ous frame is extracted, and its motion is estimated using the
Lucas–Kanade [8] tracker extended with failure detection.
The target location is computed based on the 50 % of the
most reliable displacements using median.

4.2.2 Cascade detector

The detector which consisted of three stages in IRF-TLD is
named asCascadeDetector, which treats every frame as inde-
pendent and performs a novel adaptive belt scanning of the
image to localize all appearances that observed and learned
in the past. In the first frame, the all possible sub-windows
based on the size of initial target box are generated with
the following parameters: scales step = 1.2, horizontal step
= 10 % of width, vertical step = 10 % of height, minimal
box size = 20 pixels. The cascade detector is responsible for
selecting the most possible target candidate in each frame.
In consideration of the heavy computational work of calcu-
lating all the sub-windows, we design an adaptive detection
strategy, namely ‘belt scanning’, for which only a belt region
determined by the center of the teacher’s face needs a scan.
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Fig. 3 Framework of IRF-TLD
tracking algorithm

Furthermore, the belt region can be defined flexibly in terms
of a trade-off between accuracy and real-time performance.
In this paper, the height of the belt region is four times as
much as that of the initial target box.

Compared with TLD, which regards the entire image as
the detection scope, the belt scanning strategy improves the
detection speed at the cost of losing the traversing detection
capability in the whole image. However, we tend to assume
that the belt region is enough to cover the teacher’s moving
range in our ITTS. Besides, by comparison with other local
detection strategy that searches within a fixed radius, such
as MIL [16] and CT [30], our search strategy has greater
probability to recover from tracking failures.

Patch variance In the belt region, a large number of patches
which include background need to be rejected in advance.
This will be done by the first stage of our cascade detec-
tor, i.e., patch variance. It exploits the fact that gray-value
variance of a patchI can be expressed as E(I 2) − E2(I ),
and the expected value E(I ) can be measured using integral
images. This stage restricts the maximal appearance change
of the target and rejects those patches with gray-value vari-
ance smaller than 50 % of the variance of the target patch.

Informative random fern The inputs to the Informative Ran-
dom Fern (IRF) classifier, which is the second stage of our
cascade detector, are the image patches that were not rejected
by the variance filter. In the original TLD, every image patch
which may be available in different size consists of a number
of ferns [31]. Each fern considered as a base classifier per-
forms a quantity of pixel comparisons on the patch resulting
in a binary code, which indexes to an array of posteriors.
The posteriors of all base classifiers are averaged and the
patch is classified as the tracking target if the average pos-
terior is larger than 50 %. While the standard random fern
used in TLD as the classifier showed excellent performance,
lots of other information will be lost due to the only two

possible outputs, 0 or 1 for comparison of each pixel pair.
Furthermore, to compensate for the loss, more pixel pairs are
usually used, thus leading to an enormous memory require-
ment growing exponentially with the number of pixel pairs
in a fern. For the sake of accuracy improvement and mem-
ory saving, we promote the standard random fern classifier
in TLD to an IRF classifier which produces the real value
feature for a fern based on subtraction. In the following, the
proposed IRF classifier will be introduced from three steps:
feature formation, classification with probability and online
update.

1. Features formation:We adapt the real value feature from
[7], i.e., the real value feature fi, j described in Eq. (1) is
extracted from pixel pair j of fern i :

fi, j = I (d1(i, j)) − I (d2(i, j)),
i ∈ {1, 2, ..., T } , j ∈ {1, 2, ..., S} (1)

where T is the total number of ferns, S is the number of
pixel pairs in each fern, and I (d) represents the intensity
of an image patch I at d. d1(i, j) and d2(i, j) denote the
coordinates of the randomly generated pixel pair j of fern
i . Here, we discrete the space of pixel locations within
a patch and generate all possible horizontal and vertical
pixel coordinates for better comparisons using normaliza-
tion: d(i, j) = (g1 × w, g2 × h). Where g1 and g2 are the
randomly generated numbers of 0–1 intervals, whilew and h
are the width and height of current patch, respectively. As a
result, the robustness of the relative position for every given
pixel pair in different patch sizes is guaranteed.

Obviously, the real value feature can preserve more infor-
mation about the intensity difference between two pixels
because of fi, j ∈ R instead of fi, j ∈ {0, 1}.

In TLD, the binary features in each fern are combined into
a binary code that indexes to the posterior probability. How-
ever, in the proposed method, feature fi, j is a real value,
it is necessary to “encode” S real values in each fern into
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a single real value to simplify the subsequent comparison
and classification. A theoretical basis for this idea has been
stated by Johnson–Lindenstrauss (JL) lemma [32] that with
high probability the distances between the points in the high-
dimensional space A ∈ R

m are preserved if they are projected
onto a randomly selected low-dimensional subspace B ∈ R

n

according to a mapping function g : R
m → R

n , where
n � m. Besides, Baraniuk [33] also proved that for k-
sparse data (e.g, image and audio signal), the random matrix
such as Gaussian, Bernoulli and Fourier matrix satisfying
the JL lemma holds true for the restricted isometry prop-
erty in compressive sensing. Therefore, the typical random
Gaussian matrix R ∈ R

n×m with each entry an independent
and identically distributedGaussian randomvariable, as used
in numerousworks recently [34,35], can be selected to recon-
struct A with minimum error from B with high probability.
Formally:

B = RA (2)

As the special case in this paper, if we defined B ∈ R
1,

A ∈ R
S , thenEq. (2) can be represented asEq. (3) to facilitate

efficient projection from feature values of different pixel pairs
into a single real value:

Fi =
S∑

j=1

r j fi, j (3)

where r j ∼ N (0, 1) is a real value generated randomly
according to a Gaussian distribution. In this case, the projec-
tion result Fi keeps most of the information of the original
features fi, j , j = 1, 2, ..., S of fern i . In this way, simpler
classifiers by each informative random fern with a single real
value could be built.

Besides, comparing the proposed IRF with the standard
random fernsmethod, we can find that the IRF has the advan-
tages of requiring a constant and much lower memory from
the following analysis. Assuming that the number of classes
is γ = 2 (foreground and background) and the real value
feature is stored in a single precision type (e.g., float in C++)
which occupies 4 bytes. Then the memory requirement is
MEMOur = T × γ × 4. While in the standard random ferns
method used in TLD, a specific binary code is stored in an
integral type (e.g., int in C++) and occupies 4 bytes. The
memory requirement is MEMTLD = 2S × T × γ × 4. It is
clear that the standard random ferns method in TLD needs
memory 2S times more than the proposed IRF method.

2. Classification with probability: Every base classifier
maintains a distribution of posterior probabilities. In TLD,
the posterior probability can be calculated by counting the
frequency of a specific binary code. In our algorithm, the
output Fi is calculated as a single real value produced ran-

domly on the basis of Gaussian distribution. For simplicity,
we model the probability p(Fi |c) as a Gaussian distribution
with parameters

(
μc
i , σ

c
i

)
for fern i of class c.Whereupon, the

discriminative function that distinguishes foreground from
background is

H(F) = log

(∏T
i=1 p(Fi |c = 1)p(c = 1)

∏T
i=1 p(Fi |c = 0)p(c = 0)

)

=
T∑

i=1

log(p(Fi |c = 1))−
T∑

i=1

log(p(Fi |c = 0)) (4)

Where we assume uniform prior p(c = 1) = p(c = 0),
c ∈ {0, 1} is a binary variable which represents the sample
label and F = {F1, F2, ..., FT } is a set containing the value
of all ferns for an image patch.

The IRF classifies the patch as the target if the correspond-
ing value H(F) is larger than zero.

3. Online update: In the real-time long-term visual track-
ing, it is necessary to update the classifier online to follow
the target with appearance variations. To integrate our IRF
feature that the value of each fern is modeled as a Gaussian
distribution with parameter

(
μc
i , σ

c
i

)
to the target model, we

simplify the update of the classifier as a weighted parameter
update:

μc
i ←λμc

i +(1 − λ)μ
c,new
i

σ c
i ←

√
λ

(
σ c
i

)2+(1−λ)
(
σ
c,new
i

)2+λ(1−λ)
(
μc
i −μ

c,new
i

)2

(5)

where λ is the learning rate, μc,new
i = E[Fi |c] and σ

c,new
i =√

E[(Fi |c)2] − (E[Fi |c])2 are estimated from the training
samples at current frame.

Nearest neighbor classifierAfter filtering the patches by IRF
classifier, we use the online model [6] and classify the left
patches using an NN classifier. Online model O = {p+, p−}
includes target patches p+ = {p+

1 , p+
2 , ..., p+

m } and back-
ground patches p− = {p−

1 , p−
2 , ..., p−

n }. To classify the
candidates that are not yet rejected, the normalized corre-
lation coefficient (NCC) is used to measure the similarity
between the image patch I and template patches p+

i or p−
i ,

illustrated as NCC(I, p+
i ) or NCC(I, p−

i ). The similarity
between I and O can be measured by

Sim(I, O)

=
maxp+

i ∈O Sim
(
I, p+

i

)

maxp+
i ∈O Sim

(
I, p+

i

)+maxp−
i ∈O Sim

(
I, p−

i

) (6)

An image patch can be classified as positive if Sim(I,O) >

thr.
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With this stage, the performance of the cascade detector
is improved.

4.2.3 P–N learning

The task of learning is to initialize the cascade detector in
the first frame and update it in run-time using the P-expert
and the N-expert. According to [36], the online P–N learning
performs the following steps: (1) P-expert—recognizes false
negatives, and adds them to training set with positive label.
(2) N-expert—recognizes false positive, and adds them to
training set with negative label. The independence of the two
experts enables mutual compensation of their error.

In every frame, the P-expert outputs a decision about the
reliability of the current tracked result. If the result is reliable,
the onlinemodel and the informative random fern are updated
using new labeled samples. Our algorithm generates labeled
samples based on the overlap of the sub-window and tracked
target box. The overlap of two boxes is measured as a ratio
between their intersection and union. By setting the thres-
holds thrp and thrn , we collect some patches as positive with
overlap> thr p and negative sampleswith overlap< thrn . The
labeled training samples are then used to update the online
model by P–N experts and the informative random fern by
Eq. (5).

4.3 Body detection

In the teaching scenario, the teacher movable space in the
classroom is divided into three areas as illustrated in Fig. 1.
The automatic switch technique from one area to another
area is detailed in Sect 4.4.2. More specifically, the teacher
face tracking algorithm IRF-TLD is employed in Rostrum
area and Transition area. However, once the face tracking
fails in Transition area or the teacher moves to Student area,
GMM is adopted to detect the teacher’s moving until the
teacher’s face can be found again. The inspiration for this
body detection methodology comes from the fact that one of
the powerful attributes of GMM is its ability to form smooth
approximations to arbitrarily shape densities. As a result,
when body detection is triggered by the automatic switch,
each pixel is modeled as a mixture of Gaussian distribution
and an online approximation is carried to update parameters
of themodel. The GMMcontributes to a better moving target
detection using a discrete set (3–5 in this paper) of Gaussian
function, each with its own mean and covariance matrix.

4.4 Camera control

In our ITTS, camera control is the requisite module in auto-
matically keeping more effective tracking of a selected target
andmaking a close-up shot. Here,we present a practical solu-
tion,which controls themovement of the camera solely based

Fig. 4 Multi-rectangular block division for camera control (XOY
denotes the image coordinate system, a–h are positive real numbers,
C1–C8 denote sub-area of motion area)

on the information in the active camera images. The specifics
of the camera control design are discussed below.

4.4.1 Pan–tilt control

As noted earlier, we can get the central coordinates (u, v) as
well as the image size of the tracked target in every frame,
and obtain the tracking error: the displacement from the cen-
ter of target to the image center, if the target is not at center of
image. In our approach, this error and (u, v) will be used to
design a multi-rectangular block division (MRBD) camera
Pan–tilt control strategy to keep the adaptability for varia-
tion of the target and the stability of tracking from a single
PTZ camera on real-world scenarios with non-cooperating
subjects. An overview of our MRBD scheme can be seen in
Fig. 4. Suppose an image of size M × N , we formulate Stop
area, Hold area, Motion area in a number of blocks. Different
camera control strategy patterns in terms of the target image
location, i.e., (u, v), are listed as follows.

1. When (u, v) is detected in stop area, shown in Eq. (7),
the camera stops Pan–tilt operation immediately and will
keep waiting for the next P/T instruction;

Stop area = {(u, v)|b ≤ u ≤ c, f ≤ v ≤ g} (7)

2. When (u, v) is detected in hold area, shown in Eq. (8),
the camera maintains its previous pan–tilt action until the
target moves to other areas;

Hold area

= {(u, v)|a≤u≤d, e≤v≤h, (u, v) /∈stop area} (8)

3. When (u, v) is detected in motion area, the pan–tilt
behavior of the camera in different sub-area Ci is deter-
mined by a set of rules specified by Eq. (9).
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Motion area=C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6 ∪ C7∪C8⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 = {(u, v)|0 ≤ u ≤ a, 0 ≤ v ≤ e} LeftUp
C2 = {(u, v)|a ≤ u ≤ d, 0 ≤ v ≤ e} Up
C3 = {(u, v)|d ≤ u ≤ M, 0 ≤ v ≤ e} RightUp
C4 = {(u, v)|d ≤ u ≤ M, e ≤ v ≤ h} Right
C5 = {(u, v)|d ≤ u ≤ M, h ≤ v ≤ N } RightDown
C6 = {(u, v)|a ≤ u ≤ d, h ≤ v ≤ N } Down
C7 = {(u, v)|0 ≤ u ≤ a, h ≤ v ≤ N } LeftDown
C8 = {(u, v)|0 ≤ u ≤ a, e ≤ v ≤ h} Left

(9)

In particularly, the parameters a–h can be adjusted to spec-
ify the size of each rectangular block division area according
to the actual demand. In our implementation, the parame-
ters a–h have been set manually, and the simple yet effective
pan–tilt control strategy yields satisfactory results on a range
of test scenarios.

4.4.2 Zoom control

Apart from the rules for adjusting camera pan/tilt parame-
ters, zoom control is also an essential requirement in our
system. It can adjust the camera focal length not only to
be triggered to the region of interest with zoom-in mode
when the teacher writes on the blackboard, but also to pre-
serve the tracked teacher at a proper predefined image size
wherever he(she) moves in the classroom. To achieve the
smooth switch between different vision fields, we divide the
classroom into three areas: rostrum area (P1), transition area
(T2) and student area (S3), which is demonstrated in Fig. 1.
Besides, the split lines L1 (red), L2 (blue), L3 (green) are
formulated in image as the border of every two of the three
different areas P1, T2 and S3 (Fig. 5). Moreover, three preset
positions Z1, Z2, Z3 correspond to these areas, respectively,
i.e, Z1 ⇒ P1, Z2 ⇒ P2, Z3 ⇒ P3. As soon as the target is
detected to enter one area, the camera will be zoomed in/out
to a preset position corresponding to this area. Detailed rules
are described below:

Fig. 5 Split lines (the arrows represent the direction of the teacher’s
movement)

Table 1 Camera zoom operation

Teacher moving
direction

Teacher
location

Regional and algorithm
determination

Camera
preset

From P1 To S3 v < L2 P1 (IRF-TLD) Z1

L2 < v < L3 T2 Z2

L3 < v S3 (GMM) Z3

From S3 To P1 L2 < v′ S3 (GMM) Z3

L1 < v′ < L2 T2 Z2

v′ < L1 P1 (IRF-TLD) Z1

The positions of split lines are initialized in terms of the
ordinate: L1 = y0 + h1, L2 = y0 + h2, L3 = y0 + h3,
where y0 is the central ordinate of teacher’s face in the ini-
tial frame, and hi is the distance from y0 to Li . h1, h2, h3
are specified by the size of classroom. In our paper, h1 is
equal to the height of the initial target box, h2 = h1 + 10
and h3 = h1 + 20. When the teacher walks around in the
classroom, the IRF-TLD algorithm for teacher face tracking
and GMM algorithm to determine the location of the teacher
will be adopted alternatively. Suppose that (u, v) indicates
the central coordinate of the teacher’s face, while (u′, v′)
denotes the top-left coordinate of the body detection result
by GMM, the camera zoom operation can be summarized in
Table 1.

In Transition area T2, whether the body detection algo-
rithm or the face tracking algorithm is used may depend on
the criterion listed in the Eq. (10).

{
(AT ∈ T 2)&(FL ≥ th) ⇒ Body detection (GMM)
(AT ∈ T 2)&(FL < th) ⇒ Face tracking (IRF-TLD)

(10)

where AT denote the area where the teacher is located, FL is
the successive frames that the face is no longer tracked, and
th is an integer.

In case that the teacher is writing on the blackboard, our
tracking will usually fail due to the teacher’s face becoming
invisible to the camera. The decision criterion for zooming
in, i.e., the camera operating for the close-up of blackboard
writing can be defined as:

(AT ∈ P1)&(FL ≥ th) ⇒ zoom in (11)

In our case, th is chosen as 40 empirically.
Therefore, with the adoption of the simple but efficient

control P/T/Z strategy to drive the movement of the monoc-
ular PTZ camera, we achieve to keep the position of the
tracked target in the middle of the image and preserve its
proper predefined image size in the long-term tracking.
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5 Experiments

Our ITTS is implemented in C++, which runs at 25 frames
per second (FPS) on an Intel Dual-Core 3.30GHz CPU with
4GRAM.TwoSonyEVI-D70Pcameras, tracking the teacher
and shooting the students, respectively, serve to capture the
video of the teaching process. Each camera offers a range
of pan angle (−170◦ → +170◦), tilt angle (−30◦ →
+90◦) and an 18X optical zoom feature. Besides, a dual
image acquisition card and a serial port expansion card are
employed to connect the cameraswithPCas shown inFig. 2a.

Two kinds of experiments and elaborate study are made
in this section. Firstly, to validate our IRF-TLD tracking
algorithm, we compare it with several state-of-the-art algo-
rithms in terms of accuracy and running time (Sect 5.1). Next,
the performance of our ITTS of monocular active vision is
evaluated in real classroom scenes (Sect 5.2). In all the exper-
iments, the total number of ferns is set to T = 50 and the
number of pixel pairs in a fern is decided as S = 4. Experi-
mentally, we find that in Eq. (5), the learning rate λ selected
as 0.85 ismore suitablewith the capability to follow the target
appearance variation and to overcome drifting. Meanwhile,
the similarity threshold in Eq. (6) is set as thr= 0.6. The
overlap thresholds for positive and negative training samples
are set as thrp = 0.8 and thrn = 0.2, respectively (dis-
cussed in Sect. 4.2.3). This setting generates approximately
50 positive samples and a large number of negative samples.
Among the large number of negative samples, 100 of the neg-
ative samples are selected randomly since the appearance of
background is more diverse than that of foreground.

5.1 Algorithm accuracy

5.1.1 Datasets and evaluation metric

Nine state-of-the-art algorithms on 17 fully annotated video
sequences (8882frames) includedTLD[6], Struck [14], SCM
[13], OAB [15], ASLA [12], IVT [10], LSK [37], CT [30]
and DFT [38] are put to use in this comparison to validate
our IRF-TLD tracking algorithm. The proposed IRF-TLD
in our ITTS is used to track the teacher’s face, hence the
test sequences purposely chosen are face tracking scenarios
based on different challenging factors: occlusion, illumina-
tion, plane rotation, scaling, etc. These sequences with the
corresponding ground truth files and the compared code
library are available on the website: http://visual-tracking.
net. Note that we integrate our IRF-TLD algorithm in the
code librarywith uniform input and output formats to achieve
the objective comparison. In addition, all of these algorithms
are evaluated in the one-pass evaluation (OPE) [21].

We use the precision plots based on the center location
error and the success plots based on the overlap metric [21]
to evaluate the robustness of tracking algorithms quanti-
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Fig. 6 The overall performance of the 10 tracking algorithms in terms
of success plots and precision plots

tatively. Center location error is defined as the Euclidean
distance between the center location of the tracked target
box and that of the ground truth box. The precision plot
shows the percentage of frames whose estimated locations
are within the given threshold distance of the ground truth.
To compare the performances of different algorithms, the
score for the threshold equal to 20 pixels is used to be
the representative precision score. The overlap is defined as
OS = Area(bt ∩ ba)

/
Area(bt ∪ ba), where bt is the tracked

target box and ba denotes the ground truth box. To evaluate
the performance on a sequence of frames, we count success-
ful frames whose overlap OS exceeds the given threshold.
The success plot shows the ratios of successful frames at
the thresholds varied from 0 to 1. Instead of using a spe-
cific threshold (e.g., 0.5) for evaluation, the area under curve
(AUC) of each success plot is employed to rank these algo-
rithms in our paper. For the reason that the success plot
measured by AUC is more convincing than the precision plot
calculated at one threshold, we compare the performance of
different algorithms mainly based on success plot but use
precision plots as auxiliary in the following.

5.1.2 Results and analysis

The overall performance of the 10 tracking algorithms based
on success plots and precision plots are illustrated in Fig. 6.
The corresponding ranked results are displayed in the leg-
ends of each drawing. According to the experimental results,
our algorithm achieves outstanding performances in both the
metric overlap and center location error: in the success plot,
it achieves an AUC score of 0.500 and ranks 3rd following
SCM (0.561) and Struck (0.535), but outperforms TLD by
2.4 %. Meanwhile, the overall precision of our IRF-TLD
at 66.2 % is the highest among all algorithms except for
SCM (70.4 %) and Struck (69.6 %), yet beating TLD by
5.7 %. In particular, although Struck and SCM perform bet-
ter than our IRF-TLD in precision and overlap scoring, the
fps achieved by our algorithm (25fps) is more practical than
Struck (20.2fps) and SCM (0.51fps) [21].

To facilitate analyzing the strength and weakness of the
proposed IRF-TLD algorithm, we further evaluate these
tracking algorithms on sequences with 7 attributes. The suc-
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Fig. 7 Success and precision plots of sequences with different attributes

cess plots of different attributes are shown in Fig. 7. We
note that the proposed IRF-TLD ranks within top 5 on all
of attributes, and outperforms TLD on 5 attributes includ-
ing occlusion, illumination variation, scaling and (in-)out-of
plane rotation attribute.

For the sequences with attributes such as occlusion, in
plane rotation, IRF-TLD correspondingly ranks 2nd and 3rd
on all evaluated algorithms while SCM ranks 1st. Different
from our method that only utilizes the target representa-
tion, SCM employs a sparsity-based generative model for
target representation, and develops a novel histogram-based
method using overlapped sliding windows that takes the spa-
tial information of each patch into consideration with an
occlusion handling scheme. These measures are helpful to
locate the target from heavily occlusion and plane rotation.
In our IRF-TLD model, we promote the original random
fern classifier in TLD with two possible 0 or 1 outputs to
the IRF classifier of the real value Fi via a Gaussian project
matrix as described in Eq. ( 3). The update scheme facilitates
the cascade detector combining with P–N learning tactics
in IRF-TLD to account for more informative patterns of the
target object than what is done by TLD. As such, IRF-TLD
can achieve more discriminative detection result and han-
dle occlusion robustly, performing even better than TLD by
4.1 % (Occlusion) and 1.6 % (In plane rotation) respectively.

On the sequences with the illumination variation, out of
plane rotation and scale variation attributes, IRF-TLD bears
some similarity to TLD in the use of an online update scheme
that can adapt to the target appearance variations ranks in the
top 5, while the top 2 (i.e., SCM and ASLA) all take advan-
tage of spatial and local information of the target. This helps
locate the target more accurately when the target appear-
ance changes greatly due to out of plane rotation. Besides,
the feature selection scheme of sparsity-based discriminative

classifier in SCM can choose suitable number of discrimi-
native feature, which can better separate the target from the
background in spite of the illumination variation. To this end,
ASLA generates the dictionary for local sparse coding by the
dynamic template, which are updated online based on both
incremental subspace learning and sparse representation. In
particular, with affine motion model (e.g., SCM and ASLA),
the trackers often handle better on the scale variation sub-
set. As IRF-TLD produces the real value for a fern based
on subtraction and Gaussian random projection, leading to a
more informative and meticulous result than the binary fea-
ture used in the TLD. Hence, the maintaining of the diversity
of real value features enables IRF-TLD to practice better
than TLD does in the presence of significant drastic appear-
ance changes. The results indicate that IRF-TLDoutperforms
TLD by 0.1 % (Illumination variation), 3 % (Out of plane
rotation) and 3 % (Scale variation), respectively.

Finally, for the sequences with Fast Motion and Motion
Blur attributes, IRF-TLD performs well and its correspond-
ing ranking is 4th and 3rd, while TLD ranks 3rd and 1st,
respectively. According to the [39], most sequences in each
subset of motion blur fall into the subset of fast motion. Thus,
we conclude that the fast motion attribute in each subset sig-
nificantly affects the evaluation because IRF-TLD does not
address fast motion well due to the quick belt scanning strat-
egy and so do SCM and ASLA with the application of the
simple dynamic model based on stochastic search. On the
contrary, the trackers based on dense sampling (e.g., Struck,
TLD) perform much better than others in the subset of fast
motion due to their full-scale and large range search strategy.

To further analyze the performance of IRF-TLD, the AUC
scores and precision scores for each sequence are also gen-
erated and shown in Table. 2. Some sampled results on
video sequences are illustrated in Fig. 8. From Table 2, we
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Fig. 8 Screenshots from some of some sampled tracking results

can observe that IRF-TLD performs better on 12 out of 17
sequences than TLD. Note that there exist many challeng-
ing factors in these videos that IRF-TLD achieves favorable
results. For instance, the sequences dudek, faceocc2, girl
and dragonbaby have the attributes of occlusion, in which
dudek, girl and dragonbaby also have scale variation and
(in-)out-of plane rotation attribute, thereby making them far
more challenging. Notwithstanding, IRF-TLD performs per-
sistently well from beginning to end. Meanwhile, the data
from Table 2 show that IRF-TLD achieves higher AUC
scores when compared with TLD on above sequences. Fur-
thermore, the sequences mhyang, trellis anddavid have the
attributes of illumination variation and out-of-plane rotation.
The AUC scores of our IRF-TLD exceed that of TLD (except
for sequence david); in contrast, on other sequences with the

fast motion, motion blur and in-plane rotation attribute, such
as blurface (#440/#493) and boy (#510/#602), the tracking
results with IRF-TLD may gradually drift when the target
starts to move fast. This further verifies that the fast motion
attribute significantly affects the performance of our IRF-
TLD. However, when the target recovers the normal motion,
such as the #493 frame in blurface and #602 frame in boy,
IRF-TLD can accurately localize the target again.

In fact, no tracker can perform better than others on all
video sequences. Particularly worth mentioning is that the
memory requirements when comparing IRF-TLDwith TLD.
As mentioned in 4.2.2, the proposed IRF-TLD owns the
advantage of low memory requirement. In this experiment,
the parameter of standard random fern in TLD are set to
T = 10, S = 13, then its memory requirement (MEMTLD)
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Fig. 9 Snapshots of our ITTS. a Rostrum area b Transition area, c
student area, d blackboard writing. The light blue rectangle is used to
represent the body detection result by GMM

is 6,55,360 bytes. However, in our IRF-TLD, T = 50, the
memory requirement (MEMOur) is 400 bytes, thus it can save
more memory resources.

According to these experiments on the benchmark seque-
nces, the IRF-TLDalgorithm,with its excellent performance,
is proved suitable for our system. Next, we will combine the
camera control to verify the performance of our ITTS.

5.2 System performance

To evaluate the effectiveness of our ITTS, especially the
teacher tracking in teaching process, a series of sample sce-
narios were tested in real classrooms.

5.2.1 Scenario 1: single person tracking

The purpose in this scenario is to verify the feasibility and
effectiveness of camera control. The teacher can walk at nor-
mal pace, change direction, turn his back to the camera or
write on the blackboard.The split lines L1 (red), L2 (blue), L3

(green) in Fig. 9 were initialized in terms of the initial target
box and the size of the classroom as described in Sect. 4.4.2.
Figure 9a displays the case that the teacher camera can auto-
matically swing to keep a smooth track of the target when

the teacher walked around the Rostrum area. Once the image
location of the teacher’s face was detected having crossed
the line L2 (frame 487) or moved across the lines L3 (frame
1157), following the rules stated in Sects. 4.4.1 and 4.4.2,
the IRF-TLD face tracking and GMM body detection will be
used alternatively to calculate the new location of the teacher
in the transition area or student area. Moreover, the output
data of the new position are used to control the PTZ teacher
camera moving to the destination (preset Z2 or Z3) automat-
ically. If the result showed that the teacher returned back to
the platform, the IRF-TLD for teacher face tracking will start
again (frame 2261).

The close-up operation will be trigged as showed in
Fig. 9d. When the teacher was writing on the blackboard
(frame 2534), it was known from Sect. 4.4.2 that this per-
formance could be explained by Eq. (11). Besides, the zoom
out operation was carried out when the teacher’s face became
visible again, and then our ITTS successfully recovered the
teacher face tracking (frame 2562).

For the following Scenario 2 and 3, all of the scenes were
arranged just in rostrum, therefore, those split lines will no
longer be displayed.

5.2.2 Scenario 2: occlusion

This scenario is used to test the robustness of the system in
case of occlusion. We design the scene where the teacher
interacted with the student in the platform. For the long-term
tracking, it is necessary to recover from failure and re-detect
after full occlusion. Figure 10 shows the sample sequences. In
frame 3516, the tracking failed due to the heavily occlusion.
The cascade detector of our teacher tracking algorithm (IRF-
TLD) is able to re-detect the target and correct the tracking
failure when the target appears in the camera’s field of view.
As can be seen, the system recovered to track the teacher in
frame 3528 when the teacher’s face became visible again.
In the case when the teacher stays occluded for a long time,
our system would be mistaken for blackboard writing with

Fig. 10 Keeping track through occlusion by the student
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Fig. 11 Keeping track through projection screen

the close-ups, but it is able to recover quickly as long as the
teacher’s face becomes visible in the view field eventually.

5.2.3 Scenario 3: illumination variation

The goal in this scenario was to test the robustness of the sys-
tem in case of illumination changes (Fig. 11). As can be seen
from the images (frame 1–299), our system is robust enough
to keep stable track although the light intensity changes obvi-
ously when the teacher passed in front of the projection
screen. Besides, the occlusion under the situation of light-
ing variation appears in frame 3049. Our system can still
detect the correct target and recover quickly in frame 3054.

The sample scenarios above have suggested that our ITTS
is able to keep tracking the teacher through strong lighting
variations or occlusions. Meanwhile, the stability of recover-
ing from track losses ensures the long-term tracking ability
of our system.With the combination of a highly reliable auto-
matic control strategy for monocular PTZ camera, our ITTS
is guaranteed to have the capability of keeping smooth track
as well as quickly obtaining close-ups of blackboard writing.

6 Conclusion

We proposed an effective and efficient way to build our ITTS
for displaying a high-quality teaching scene with two generic
commercial PTZ cameras. An active tracking module with
two threads: Teacher tracking and stand-up student detection
can be automatically triggered to fulfill our ITTS function.
The StudentCamera is applied to observe the activities of stu-
dents, while the Teacher Camera is responsible for tracking
the teacher during lecturing.

Two main contributions of our system have been detailed
in Sect. 4. First, we designed a fully automatic face detection
and tracking mechanism for long-term teacher face track-
ing with resistance to occlusion and illumination changes
by complementary algorithms such as the face Adaboost
detection algorithm, a novel long-term tracking algorithm

IRF-TLDandGMMbody detection algorithm. The proposed
IRF-TLD tracking algorithm, whose superior performance
has been demonstrated on benchmark challenging sequences
when compared with some other state-of-the-art tracking
algorithms, fits well to the control part to form a real-
time ITTS. Besides, the IRF-TLD has advantages of high
accuracy and low memory requirement, therefore, it is very
appropriate for embedded systems. Second, based on image
position, unique and effective close-loop feedback strategies
formonocular active vision camera, such as the split lines and
multi-rectangular block division (MRBD) camera Pan–tilt
control strategy as well as the rules of camera zoom control-
ling, are created to make the real-time-specific target face
tracking robust to view field changes.

There are several possible directions to extend this work.
First, an accuracy and robust stand-up student detection
is still an open issue necessitating further improvements.
Another interesting line of further research is developing our
framework on the embedded device such as DSP for broader
applications.
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