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a b s t r a c t 

Blur image classification is a key step to image recovery in image processing. In this article, an en- 

semble convolution neural network (CNN) is designed to identify and classify four types of blur im- 

ages: defocus blur, Gaussian blur, haze blur, and motion blur. To achieve this, a two-stage pipeline, 

comprised of deep compression and ensemble technique, is proposed to enhance model discriminabil- 

ity without incurring additional computing burden. Specifically, our method first prunes the well-known 

networks, Alexnet and GoogleNet, by an appropriate compression ratio. The pruned networks are de- 

noted as Simplified-Fast-Alexnet (SFA) and Simplified-Fast-GoogleNet (SFGN). Next, we employ an en- 

semble policy to integrate the SFA with SFGN as SFA + SFGN by assigning their respective weights based 

on a voting mechanism. In addition, to provide a benchmark set of blur image samples for train- 

ing and testing blur classification models, we create a new public blur image dataset (available online 

at http://doip.buaa.edu.cn/info/1092/1073.htm ) containing 80,0 0 0 + patch-level, naturally blurred pho- 

tographs, constructed using the improved super-pixel segmentation method, and 20 0,0 0 0 + artificially 

blurred images. Numerical experiments demonstrate the superior performance of the proposed approach 

in comparison with the original Alexnet and GoogleNet, as well as other state-of-the-art methods. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Blur image type classification is essential to blur image recov-

ry. Meanwhile, it is a challenging problem since image blurring

ay be caused by various factors. For instance, the interference

f natural fog can result in the haze blur, optical lens distortion

an lead to the defocus blur, the atmospheric turbulence can bring

bout the Gaussian blur, and the relative motion between the cam-

ra and the target during exposure can give rise to the motion blur

1,2] . Such blur images are commonly seen in daily life. However,

t is extremely hard to achieve their automatic identification and

lassification by a computer. 

The existing methods for blur image classification can be

ainly divided into two groups: those based on handcrafted fea-

ures and those based on learned features. The former typically re-

uires reliable prior knowledge about the extraction of the blur

eatures, which can be used to differentiate various types of blur

mages. In these methods, the features are usually selected man-

ally based on the sample images and then applied to the train-

ng of the designated classifiers. On the other hand, the approaches

ased on learned characteristics use only the original blur images
∗ Corresponding author. 
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nd automatically recognize the difference among the images with

ifferent types of blur. 

Generally speaking, the handcrafted feature-based methods are

uitable for small scale classification tasks. In Liu et al.’s work [3] ,

everal handcrafted blur features, for instance, local power spec-

rum slope and local autocorrelation congruency are utilized to

rain a Bayes classifier, which realizes the identification of the blur

ypes. A similar method relying on the alpha channel blur feature

as been proposed by Su et al. [4] , which uses disparate circu-

arity in terms of the extension of blurs. In Gao et al.’s work [5] ,

 method named adaptive frame rate up-conversion is proposed

or different motion classification of image sequence, but does not

onsider other degraded blur types. In article [6] , Gaussian blur,

efocus blur and motion blur are classified by discrimination func-

ions and decision rules based on the blur features extracted from

he twice FFT transform spectrum. In addition, a power spectrum

eature-based SVM classifier is proposed in [7] and applied to

he assessment of both artificially distorted images and naturally

lurred images. In 2014, by means of their own self-created blur

etection dataset that contains 10 0 0 images with human labeled

round-truth blur areas, Shi et al. analyze feature discrepancy in

radient, Fourier domain, and data-driven local filters to differen-

iate between blurred and unblurred image regions [32] . Though

he above-mentioned methods can achieve the classification or

https://doi.org/10.1016/j.sigpro.2018.09.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2018.09.027&domain=pdf
http://doip.buaa.edu.cn/info/1092/1073.htm
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evaluation of the blur images to a certain degree, the robustness of

these classification methods are not satisfactory for practical appli-

cations. 

Recently, researchers in this area have shifted their attention

from heuristics-based priori methods to the Deep Learning ap-

proach, which has been applied to a number of computer vision

tasks based on learned features. Based on the model construc-

tion method involved, the deep learning approach can be divided

into three classes: the generative method, the discriminant method

and the mixed method, which combines the generative method

with discriminant method. Among them, convolution neural net-

work (CNN) is a typical discriminant model and has been widely

used in solving object detection and instance object classification

problems. Specifically, Jain and Seung demonstrate the superior-

ity of CNN in de-noising images polluted by Gaussian noise in [8] .

Moreover, a simple, single-layered neural network based on multi-

valued neurons is proposed by Aizenberg et al. to identify four blur

types [9] : defocus blur, rectangular blur, motion blur and Gaussian

blur. In 2012, Alexnet [10] was awarded the winner of the clas-

sification in ImageNet Large Scale Visual Recognition Competition

(ILSVRC-2012). The proposed techniques of weight sharing, Recti-

fied Linear Unit (ReLU), and dropout have shown to have a great

impact on the developments of later CNN models. In 2014, VGG

[11] and GoogleNet [12] won the crown of detection and classi-

fication tasks in ILSVRC-2014, which declared the great progress

made by the CNN-based deep learning methods. Specifically, the

VGG-19 uses a large number of 3 × 3 convolution templates, which

can not only reduce the model parameters, but also be conducive

to deepen the model. On the other hand, GoogleNet, which is

also called the Inception model, is connected by a large number

of Inception structures. These Inception structures can reduce the

model parameters and enrich the diversity of the learned features.

Moreover, the three loss layers included in GoogleNet make it an

ensemble model, which is resulted from the integration of three

weaker CNN models. In 2015, ResNet [13] was developed by He

et al. by cascading a large number of residual modules to overcome

the overfitting problem. This resulted in a well-trained model with

depth at layer 152 and won the first prize of ILSVRC-2015. Be-

sides, the ensemble method as a kind of learning paradigm has

been employed to enhance the overall classification performance.

In paper [14] , a multi-scale CNN method is proposed to improve

the recognition of both the scale-invariant representations and the

scale-variant representations. Its performance is evaluated based

on a challenging image classification task, which involves task-

relevant characteristics at multiple scales. The results show that

the multi-scale CNN outperforms the single-scale CNN. In article

[15] , a super-pixel-based multiple local convolution neural network

(SML-CNN) model for panchromatic and image classification is pro-

posed and shows clear effectiveness in the experiments. However,

to the best of our knowledge, while the CNN model has been used

to perform the classification of object or character using the deep(-

based) representation, it has not been applied to the classification

and identification of image blur patterns. 

Most recently, another learning-based method implemented by

pre-trained Deep Neural Network (DNN), which is a generative

model of deep learning, is proposed by Yan and Shao [16] for blur

classification. In their experiments, the DNN model was trained

on 36,0 0 0 blur images and achieved the classification accuracy of

95.2% based on 60 0 0 testing images. However, the study only con-

siders three types of blur (Gaussian, defocus and motion) and the

experiments are only conducted based on simulated blur images. 

Inspired by these earlier successful cases of blur type iden-

tification [8,9] and the remarkable performance of Alexnet and

GoogleNet in image classification tasks [10,12] , as well as the

multi-scale feature ensemble methods in [14,15] , a supervised ar-

chitecture that integrates the SFA (simple-fast-Alexnet) and SFGN
simple-fast-GoogleNet) is proposed in this paper. To achieve the

lassification of four blur types (haze blur, Gaussian blur, defocus

lur and motion blur) accurately and effectively, we first create

 benchmark set of blur image samples for training and testing,

hich consists of a natural blur image dataset derived from real

mages by generating super-pixel with an improved simple lin-

ar iterative cluster (SLIC) algorithm, and a simulated blur image

ataset. Then, individual classifiers, i.e., SFA and SFGN, are designed

o construct good models from these datasets. Finally, the weight-

ased voting methods are employed to form a meta-classifier, i.e.,

FA + SFGN, which can be used in online applications for blur clas-

ification. 

The remainder of the paper is organized as follows:

ection 2 overviews the motivation and methodology used to

onstruct the meta-classifier in this work, including the pruning

f Alexnet and GoogleNet, the structures of SFA and SFGN, and

he ensemble mechanism used in SFA + SFGN. The modified SLIC

lgorithm is introduced in Section 3 for extracting the blur regions

o construct our benchmark blur image datasets and to conduct

he pre-processing of the images during online blur classification.

ection 4 presents the numerical experiments and the results to

erify the performance of the proposed ensemble CNN model. The

onclusions are summarized in Section 5 . 

. Ensemble architectural details 

The ensemble classifier approach has attracted great attention

ver the last decade due to its empirical success over the single

lassifier approach in various applications. A key characteristic of

n ensemble classifier is that it is constructed by combining the

ndividual decisions of a set of classifiers in a certain manner. In

ther words, an ensemble is generally constructed by generating

nd then combining a number of base learners. It is discovered

hat ensembles are frequently more accurate than the individual

lassifiers that make them up. Nevertheless, having the base learn-

rs as accurate and diverse as possible can usually lead to a good

nsemble. With the amazing progress lately in machine learning,

specially with various state-of-the-art deep models that are capa-

le of extracting robust features, one may expect to take the ex-

sting neural network models and deploy them to the base learn-

rs setting. However, those state-of-the-art neural networks typ-

cally have up to millions of parameters. These models are gen-

rally both computationally and memory intensive, making them

ifficult to be directly used as base learners for ensemble. To over-

ome this challenge, our work focuses on the development of en-

emble technique and the base learner setting without significantly

ncreasing computational complexity. Inspired by the achievements

n network model compression, such as designing compact layers

17] , quantizing parameters [18] and network pruning [19] , we pro-

ose a simple and effective ensemble convolution neural network,

n which each base learner is designed by decreasing the deep

odel size while ensuring classification accuracy at the same time.

pecifically, to achieve the overarching goal of creating a blur clas-

ification system, we first apply the pre-pruning strategy to com-

ress the Alexnet and GoogleNet as SFA and SFGN, respectively,

nd then ensemble them as SFA + SFGN through a voting mecha-

ism. The details of these two steps will be elaborated in the fol-

owing part of this section. 

.1. Deep model pruning 

The number of neurons in each convolution layer of a deep

odel equals to that of the feature maps in the convolution layer.

ne key property of a network architecture is its ability to pro-

uce a good “representation of the data” rather than more feature
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aps. Redundant features usually take up plenty of computing re-

ources, and sometimes cause the network to be interfered with

rivial details. Therefore, we first prune the deep model of Alexnet

nd GoogleNet both in length and width in order to remove the

eductant representations. 

.1.1. Model length pruning 

For the Alexnet architecture, which consists of eight layers in-

luding three fully connected layers (FCs) [10] , it is known that the

Cs are the joint and transfixion to bridge the convolutional layers

ith neural network classifiers. However, the FCs have up to mil-

ions of parameters, which account for 80% of the entire network.

n this paper, we propose to remove the first two FCs and pre-

erve only the final one to alleviate overfitting caused by redun-

ant parameters and keep the bridge function at the same time.

ote that the dropout method also disappears when removing the

rst two FCs, which will cause overfitting problems. To address this

roblem, the batch normalization (BN) [20] layer is employed not

nly to play the role of dropout, but also to achieve the function

f the original normalization method, i.e., local response normal-

zation (LRN) [10] . 

According to reference [20] , the basic principle of batch normal-

zation is illustrated as follows: 

 

(k ) 
norm 

= 

X 

(k ) − E[ X 

(k ) ] √ 

V ar[ X 

(k ) ] + ε 
(1) 

here X (k ) 
norm 

is the k th normalized output of the convolution layers,

 [ X 

( k ) ] is the expectation over the batch input samples, Var [ X 

( k ) ] is

he variance of the batch input samples, and ɛ is a micro-constant.

ote that simply normalizing the activations in such way will

hange the distribution of the original data. To address this, the

utput of the batch normalization layer is modified as follows: 

 

(k ) = γ (k ) · X 

(k ) 

norm 

+ β(k ) (2) 

here γ ( k ) , β( k ) are the pair parameters for scaling and shifting the

ormalized value X 
(k ) 
norm 

. They are learned along with the original

odel parameters during the entire training stage. On the other

and, LRN can be expressed as 

 

(i ) = 

x (i ) 

(K + ρ
∑ 

j ( x 
( j) ) 

2 
) 
η (3) 

here the activity of neuron is denoted by x ( i ) , after applying the

 th kernel, the response-normalized activity is designated by y ( i ) .

he constants K, ρ , and η are hyper-parameters whose values are

iven manually. Notably, j represents the order of channels. 

From formulas ( 1 )–( 3 ), it can be seen that the output of the LRN

s only related to an individual sample itself, while the output of

he BN is determined by the distribution of all training samples in

he mini-batch. Therefore, replacing LRN with BN can improve the

eneralization capability of the network. 

As for the GoogleNet architecture, a block called the inception

nd the application of the “network in network” are its core pol-

cy [12] . In GoogleNet, various convolution kernels with the sizes

f 1 × 1, 3 × 3 and 5 × 5 are employed in the inception module to

earn the feature map with various scale. Then, the scale-variant

eature map will be merged in the next layer called filter con-

atenation. The 1 × 1 kernels are used before the 3 × 3 and 5 × 5

ernels and the computation burden can be reduced by adjusting

he number of 1 × 1 kernels involved. In addition, the operation of

he three loss layers in the original GoogleNet can be regarded as

n ensemble model that integrates three individual models using a

eighted voting method. 

Considering that our 4-class classification task is relatively

traightforward and does not need as many model parameters as
n ImageNet, which involves thousands of objects, we trim the

ength of the original GoogleNet by simply removing all of the

orresponding model architectures in the last two loss layers and

eeping just the first individual model. Thus, a shortened version

f GoogleNet, referred to as GoogleNet-2loss , is formed. 

.1.2. Model width pruning 

In addition to model pruning in length, model width pruning

s also conducted in our work to compress the deep network even

urther. Note that, in the existing studies on model pruning [21,22] ,

t is usually carried out by first learning the connectivity through

re-training and then removing the small-weight connections. In

ur model, however, the width pruning can be viewed as a kind of

re-pruning, which is carried out by directly reducing the number

f neurons in the networks without pre-training. The advantage of

his is that it does not need to traverse each connection weight to

etermine pruning, and thus can save a significant amount of pre-

raining time. On the other hand, when conducting the neuron re-

uction using our pre-pruning method, one key question needs to

e answered first: what is the optimal reduction ratio of the net-

orks in order to achieve desired accuracy in the blur classification

ask? Unfortunately, no analytical solution is available. Therefore,

e turn to numerical experiments as an alternative. Specifically,

e trained the modified Alexnet networks as well as the modified

oogleNet networks in our simulated training dataset, and pruned

he neurons on each layer in these networks at different ratios,

ncluding 100%, 80% 50% and 40% respectively. The resulting clas-

ification accuracy under these compression ratios are plotted in

ig. 1 . 

From Fig. 1 , we can see that compared to the uncompressed

eural network (i.e., reduction ratio = 1), the networks compressed

t ratios 80% and 50% have minimal drop in classification accuracy.

owever, when we compress the neural network with ratio of 40%,

 larger decline in classification accuracy appears. The results sug-

est that preserving 50% of the neurons in each layer of Alexnet

nd GoogleNet can maintain a good balance between computation

fficiency and classification accuracy. 

Finally, note that the function of nonlinear mapping in the net-

ork model relies on the activation functions. The Rectified Linear

nits (ReLU) and Leaky Rectified Linear Unit (LReLU) [23] are the

ost commonly used activation functions at present. Both of them

re unsaturated activation functions, which have the potential to

olve the so-called vanishing gradient problem and accelerate con-

ergence. The activation function in Alexnet and GoogleNet is ReLU

23] as shown in Fig. 2 (a), whose output is 0 when the input eigen-

alue is less than or equal to 0. In other words, the ReLU units may

die” during training. This phenomenon is typically referred to as

dying ReLU”. In this case, a large number of neurons in a network

an become stuck in dead states, effectively decreasing the model

apacity. However, to ensure the stability of the network architec-

ure after the pre-pruning process above, we hope that the neu-

ons in the modified model should be fully utilized. Fortunately,

ReLU [23] , illustrated in Fig. 2 (b), will instead have a small nega-

ive slope (here is 0.01). Instead of having the function take value

ero when the input x < 0 in ReLU, an LReLU takes small negative

alues in this input range. With this property, LReLU can ensure

ll of the neuron units in the active state to achieve the mapping

nd screening of the features. Therefore, LReLUs can be employed

o fix the “dying ReLU” problem and is adopted to replace ReLU in

ur proposed pruned model. 

In the subsequent discussions, we referred to the two net-

ork models under compression ratio 0.5, with batch normaliza-

ion and LReLU activation functions as Simplified-Fast-Alexnet (SFA)

nd Simplified-Fast-GoogleNet (SFGN), respectively. 
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Fig. 1. Classification accuracy of Alexnet and GoogleNet under different compression ratios. 

Fig. 2. The schematic diagrams of nonlinear mapping functions. 

Fig. 3. Architecture of the SFA model. 
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2.2. SFA and SFGN model architectures 

Following the above-mentioned pruning strategy, SFA and SFGN

can be generated. Their respective detailed architectures are de-

scribed below. 

The SFA architecture, as shown in Fig. 3 , has been developed

and described in details in our prior work [24] . The modification

made to the original Alexnet can be summarized as the follow-

ing steps: first, the number of neurons in each convolution layer

of Alexnet is proportionally compressed by a ratio of 0.5. Secondly,

the first two FC layers are removed from the original Alexnet to en-

hance the computational performance. Thirdly, to address the over-

fitting problem, batch normalization is used in SFA to replace the

local response normalization to normalize the learned features. The
ast is that, the LReLU is utilized to replace the ReLU to improve

he model ability of feature learning and feature representation. 

The SFGN architecture is illustrated in Fig. 4 . In addition to the

ompressing the number of neurons by a ratio of 50% and the

pplication of batch normalization and LReLU activation function,

nly the first loss layer is retained when pruning the GoogleNet

odel, while the rest of the loss layers are discarded. 

As shown in Fig. 4 , seven hidden layers are embedded in the

FGN architecture. Hidden layers 1 and 2 include the operations of

onvolution, normalization, nonlinear mapping and pooling. Hid-

en layer 6 contains the average pooling, convolution and nonlin-

ar operation. The loss and accuracy computations are embedded

n the output layer. The hidden layers 3–5, in which the kernel size

f MaxPooling is 3 × 3, are the inception modules. 
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Fig. 4. Architecture of the SFGN model. 

Fig. 5. Architecture of the proposed classification system. 
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.3. Ensemble model of SFA + SFGN design 

As stated above, the simplified network models SFA and SFGN

re designed to inherit the powerful classification capabilities and

igh accuracy performance of the original Alexnet and GoogleNet

ithout incurring more computing burden. On the other hand, the

rchitectures of SFA and SFGN are different. If we take SFA and

FGN as base learners, in light of the statement at the beginning

f Section 2 , an ensemble model can be constructed to further im-

rove the classification performance of these two individual classi-

ers. 

To construct an ensemble classifier, bagging and boosting are

wo of the most well-known learning methods [25,26] and both

an integrate a set of classifiers through voting. Among the two,

agging is based on generating replicated boot strap samples of the

ata, while boosting is usually performed by adjusting the weights

f the training instances. Besides the difference of their sampling

chemes, it is preferable for the boosting method to start with an

nitial choice model that has a slightly lower associated error rate

han random guessing. Thus, boosting is more complex than bag-

ing from this point of view, and less convenient to implement

n practice. Also, it is generally acknowledged that boosting often

eads to higher accuracy, while bagging results in more stability

27] . 

In this paper, we propose to construct our ensemble classifier

sing the bagging method. The framework of our ensemble clas-

ification system is shown in Fig. 5 . Here, the classification accu-

acies of SFA and SFGN are denoted as C1 and C2, respectively,

nd the corresponding weights of SFA and SFGN are defined as

eight1 = C1/(C1 + C2) and Weight2 = C2/(C1 + C2), respectively. 

It should be noted that the SFA, SFGN, and the ensemble classi-

er developed in this paper are for classification of globally blurred

mages . Therefore, as shown in Fig. 5 , when a blur image is en-

ered into the classification system, the super-pixel segmentation

ethod is first performed to identify the blurred regions of the

h  
riginal image. For an image that is locally blurred, a number of

atches, each being globally blurred, are extracted from the origi-

al image and are classified by weighted SFA and SFGN. The over-

ll blur type of the original image is then determined based on the

utput of the ensemble classifier. 

. Generating blur image training data 

In order to acquire a large number of blurred images to train

he deep learning model, this paper first constructs a simulated

lurred image dataset from a mass of clear images. In addition,

e also collect a great number of naturally blurred images from

omestic and international websites. However, the set of such real

i.e., non-simulated) blur images may contain abundant ones that

re only locally blurred. Thus, as mentioned above, we first use the

mproved SLIC super-pixel segmentation method to extract blurred

rea from the blurred images to form a real blurred image dataset

ontaining only global blurred images. The details of this procedure

re described next. 

.1. Simulated blurred image data generation 

The blurring of an image can be regarded as an image degrada-

ion process from high-quality to low-quality [16,28] : 

 (x ) = h (x ) ∗ f (x ) + n (x ) (4)

here F denotes the degraded image, f is the lossless image, h rep-

esents the blur kernel, i.e., the point spread function (PSF), ∗ de-

otes the convolution operator, and n ( x ) indicates the additional

oise. Here, n ( x ) is the Gaussian white noise. 

In many practical applications, such as remote sensing and

atellite imaging, the Gaussian kernel function is viewed as the

ernel function of atmospheric turbulence, which is defined as 

 (x , σ ) = 

1 √ 

2 πσ
exp (−x 2 1 + x 2 2 

2 σ 2 
) , x ∈ R (5)
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where σ is the kernel radius and R is the support region usually

meeting the 3 σ -criteria [29] . 

Motion blur is another blur type considered in this paper, which

is caused by the relative linear motion between the target and the

camera [30] , and its PSF is defined as: 

h (x ) = 

⎧ ⎨ 

⎩ 

1 
M d 

, ( x 1 , x 2 ) 

(
sin (ω) 
cos (ω) 

)
= 0 , x 2 1 + x 2 2 ≤ M d 

2 

4 

0 , otherwise 

(6)

where M d denotes the length of motion in pixels and ωindicates

the angle between motion direction and the x axis. 

Defocus blur is the most commonly seen type of blur in daily

life and it can be modeled by the cylinder function: 

h (x ) = 

{
1 

π r 2 
, 
√ 

x 2 
1 

+ x 2 
2 

≤ r 2 

0 , otherwise 
(7)

where r is the blur radius and is proportional to the extent of de-

focus. 

Finally, haze blur is caused by the interference of natural fog.

From [2] , haze blur images can be simulated by the following

equation: 

I(x ) = [ J(x ) t(x ) + A (1 − t(x ))] ∗ h APSF (8)

where t ( x ) = e −βd ( x ) indicates the medium transmission, I and J

represent the haze and the inherent haze-free images, respectively,

A is the global air light color vector, x = ( x, y ) T denotes the pixel

position in the image, and h APSF is the convolution matrix that can

be obtained from APSF kernel h r ( x ) in the image domain. 

Thus, to construct a simulated blur image, one can simply se-

lect a specific blur kernel function, assign the values to the pa-

rameters involved, convolve them with the original image and add

certain noises. The blur images in the commonly used Berkeley

dataset, Pascal VOC 2007 dataset, etc., are all constructed using this

method. 

3.2. Naturally blurred image data generation 

As we all know, there exists a huge amount of naturally gen-

erated blur images. However, most of these images are locally

blurred, while the blur classification method proposed in this work

only applies to globally blurred images. Therefore, as illustrated in

Fig. 5 , the first step before applying the classifiers is to identify

and separate the blur regions of the images. As mentioned above,

in this paper we propose a modified SLIC (simple linear iterative

cluster) super-pixel segmentation method to achieve the blur re-

gion extraction from a blur image. In this subsection, we discuss

the detailed implementation of this method. 

The SLIC method [15] is widely used in natural scene or object

segmentation tasks. This method is based on K-means clustering to

generate super-pixels, and the metrics considered are the distances

in the LAB color space [ l a b ] and Euclidean space [ x y ]. Specifically,

the LAB color distance is defined as follows: 

d lab = 

√ 

( l i − l j ) 
2 + ( a i − a j ) 

2 + ( b i − b j ) 
2 

(9)

where l, a, b are the different channels of an image in LAB color

space. The Euclidean distance is defined by 

d xy = 

√ 

( x i − x j ) 
2 + ( y i − y j ) 

2 
(10)

where x and y represent the Euclidean coordinates of a pixel. The

main clustering metric of SLIC is defined by: 

d metric = 

√ (
d lab 

N ab 

)2 

+ k ∗
(

d xy 

N xy 

)2 

(11)
here N ab is the maximal value of d lab , N xy is the size of the super-

ixel, and k is a scaling factor to control the relative weight be-

ween d lab and d xy . 

Unfortunately, the original SLIC method is not directly appli-

able to blur region segmentation due to the lack of blur-related

eatures involved. To overcome this issue and make the SLIC suit-

ble for blur region segmentation, we first extract the blur features

f local power spectrum slope, gradient histogram span, maximum

aturation of an image and construct a distance metric that incor-

orate these blur features. Below, we briefly review the extraction

f each blur feature and give the definition of blur distance metric

 blur . 

Local power spectrum slope [3] : The definition of local power

pectrum is as follows: 

(u, v ) = 

1 

M × N 

| F (u, v ) | 2 (12)

here M, N denote the image size, and F ( u, v ) is the Fourier spec-

rum. Let s ( f, θ ) denote the local power spectrum in polar coordi-

ates. Then, the relationship between the frequency and the local

ower spectrum is given by 

( f ) = 

∑ 

θ

S( f, θ ) ≈ A / f −α (13)

Thus, the local power spectrum slope in logarithmic coordinates

an be expressed as: 

≈ log (A/s ( f )) 

log f 
(14)

here A is the amplitude of spectrum and α is the index of fre-

uency f . Note that, due to the low-pass-filtering characteristic of a

lurred region, some high frequency components of the image are

ost. As a result, the amplitude spectrum slope of a blurred region

ends to be steeper than that of an unblurred region. 

Gradient histogram span [3] : The distribution of the gradient

agnitude serves as an important clue in blur detection. Blurred

egions rarely contain sharp edges and should have small gradient

agnitude. Accordingly, the distributions of the gradient magni-

ude of blurred regions should have shorter tails than that of other

egions. Thus, Gaussian modeling can be used to detect the blur re-

ion. Moreover, in order to overcome the effect of light, the image

ontrast is considered, and the gradient histogram span is defined

y: 

 = 

σ

C m 

+ ε 
(15)

here σ controls the span of the gradient histogram, ɛ is a micro-

onstant, and C m 

is the image contrast of the region m . The defini-

ion of C m 

is as follows: 

 m 

= 

L max − L min 

L max + L min 

(16)

here L max and L min are the maximum and minimum pixel values

f the region m , respectively 

Maximum saturation [3] : The definition of local region satura-

ion is given by: 

a = 1 − 3 

(R + G + B ) 
[ min (R, G, B )] (17)

here the R, G, B represent the three color channels of the

nput RGB images and the maximum saturation is defined as

a max = max( Sa ). Note that unblurred regions are likely to have

ore vivid colors than blur regions. As a result, the maximum

alue of saturation in a blurred region is expected to be smaller

han those in unblurred regions. 

Based on the above analysis, the power spectrum slope of a blur

egion is generally greater than that of a clear region, while the
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Fig. 6. Schematic of blur region recognition based on improved SLIC. 
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radient histogram span and maximum saturation of a blur region

re generally smaller than those of a clear region. Therefore, we

efine the blur feature metric d blur as follows: 

 blur = 

1 

α
+ Q + S a max (18)

here α, Q , Sa max are the local power spectrum slope, gradient

istogram span and maximum saturation defined above. With d blur ,

e further modify the metric of the SLIC for super-pixel segmen-

ation as 

ist = 

√ 

k 1 ∗
(

d lab 

N lab 

)2 

+ k 2 ∗
(

d xy 

N xy 

)2 

+ k 3 ∗
(

d blur 

N blur 

)2 

(19) 

here k 1 , k 2 , k 3 are the scale factors satisfying k 1 + k 2 + k 3 = 1, and

 lab , N xy and N blur are the maxima of d lab , d xy , and d blur in the

eighborhood of the seed point, respectively. Clearly, the distance

etric (19) of the modified SLIC method considers not only the

olor and spatial distance, but also the blur feature distance during

he super-pixel generation. Examples of super-pixel segmentation

f simulated and naturally blurred images based on the improved

LIC method are illustrated in Fig. 6 . 

Finally, in order to determine whether the generated super-

ixel is a blur or clear region, information entropy and singular

alue decomposition features of the super-pixel are extracted. The

nformation entropy reflects the amount of information contained

n the pictures and is defined as: 

 = 

255 ∑ 

i =0 

p i j log 
p i j 

2 
(20) 

here p ij is the probability of pair ( i, j ) and can be calculated by 

p i j = 

f (i, j) 

N × M 

(21) 

here i represents the gray value of the pixel, j represents the

ean of the neighbor of the pixel, f ( i, j ) is the frequency of the

air ( i, j ) in the picture, and N × M is the size of the image. Since

lur images can be regarded as experiencing disappearance of the

igh frequency bandwidth, the information entropy of a blur image

hould be lower than a clear image. 
From article [4] , the singular value decomposition decom-

oses an image into a weighted sum of a number of eigen-

mages, where the weights are exactly equal to the singular values

hemselves. Larger singular values correspond to the larger-scale

igen-images and small singular values correspond to smaller-scale

igen-images. Since the blur images can be regarded as the loss

f high-frequency details, the weights, i.e., the significant singular

alues, of blur regions are greater than those of the clear regions.

herefore, we define the metric of the singular value feature as fol-

ows: 

V D metric = 

n ∑ 

i =0 

λi 

L ∑ 

j=0 

λ j 

(22) 

here λ is the singular of the super-pixel, constant n is set to 6

nd L is the size of the super-pixel. Finally, a super-pixel is iden-

ified as purely blurred when both H ≥ 1.3 and SVD metric ≤ 0.9 hold

imultaneously. 

. Experiments results and analysis 

.1. Datasets for model training and testing 

Training dataset: The Oxford building dataset and Caltech 101

ataset are selected as our training set. A total of 10,0 0 0 images

re chosen from the two datasets randomly, among which a quar-

er is degraded by the Gaussian blur PSF with the kernel size of

 randomly selected in the range of [3,11] and σ in the range of

1,10] ; another quarter is degraded by the motion blur PSF with

he blur parameter M randomly selected in the range of [9,17] and

 in the range of [0 °, 180 °]; the third quarter is degraded by the

efocus blur PSF with the blur parameter r randomly selected in

he range of [5,25] ; and the remaining ones are treated with the

imulated haze blur PSF defined in formula (8) with parameter A

andomly selected in the ranges of [200, 255]. The Gaussian white

oise n is generated with mean selected from [ −2, 2] and vari-

nce from [1,10] . Among these artificially blurred images, half of

hem are partially blurred, while the others are blurred over the

ntire image. In addition, 3300 real/naturally blurred pictures are
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Fig. 7. Sample images in blur datasets. (a)–(d) are from the simulated blur image dataset and (e)–(f) are from the real blur image dataset. 
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collected from popular domestic and international websites such

as Baidu.com, Flicker.com, and Pabse.com. Using the improved SLIC

method described in Section 3.2 , the final training sample patches

are cropped from the obtained blur images above with the crop

size of 128 × 128 × 3 and the stride of 64 pixels. The blur types

are labeled as 0-defocus, 1-Gaussian, 2-haze, 3-motion. Finally, the

training dataset consisting of 20 0,0 0 0 simulated blur patches and

about 62,0 0 0 real/natural blur patches are obtained to train the

designate classifiers. 

Testing dataset1: The images in the Berkeley dataset and Pas-

cal VOC 2007 dataset are selected to form one testing dataset (i.e.,

with simulated blur). A total of 21,0 0 0 test sample patches are gen-

erated using the same procedure of the training patches. Among

these patches, 5560 haze blur image patches possess the same

sources with training samples and the rest are evenly allocated to

the other three classes. 

Testing dataset2: In order to testify the performance of the

proposed classifier in practical applications, a dataset consisting

of 13,810 real/naturally blurred image patches is constructed. The

samples are collected from the same internet sources as the blur

samples in the training dataset. 

All the samples in both the training dataset of simulated blur

images and the one with real/naturally blurred images are uni-

formly distributed among the four blur types to enhance the gen-

eralization of the suggested classifier. The samples in the two test-

ing datasets are random distributed. Several sample images with

artificial blur and real blur are shown in Fig. 7 . 

4.2. Performance of single SFA and SFGN model 

The classification models of SFA and SFGN are trained on a PC

with NVIDIA-GTX-1080 8GB GPU under the Caffe framework. The

resulting train loss and classification accuracy curves are shown in

Fig. 8 . 

As one can see from Fig. 8 (a), while both curves show similar

trend, the training loss of SFA appears to be more volatile than

the SFGN model. This is due to the imparity of the batch size

of the two models (SFA-64 and SFGN-256). In Fig. 8 (b), SFA and

SFGN both start with almost identical learning progress. Then, after

about 10 0 0 iterations, the SFGN model starts to show a bit higher

accuracy than the SFA model. Note that while the figures show the

performance of the two models for iterations 0–16,0 0 0, the model

training processes are terminated only when both the losses and

the accuracy curves reach their relative stable states. 

When the individual classifiers are obtained, the filter parame-

ters and the learned feature maps of each layer can be acquired.

Visualization results of the filter parameters and the learned fea-
ure maps of some layers are illustrated in Fig. 9 . Specifically,

ig. 9 (a) is the original sample RGB image, and Fig. 9 .(a) shows

he weights initialization of the filter kernels of the first convolu-

ion layer, whose parameters satisfy the Gaussian distribution. The

eight map samples are illustrated in Fig. 9 [(b)–(e)]. As one can

ee, after a long training time, a smooth filter with no noise con-

amination, no important correlation and no structural mess can

e obtained. This indicates that the model parameters are well

earned. The feature maps samples are shown in Fig. 9 [(b)–(e)].

mong them, (b) and (c) are feature maps learned from the shal-

ow layers of conv_1 and conv_2, where they reflect the global fea-

ures such as the shape features and texture features. On the other

and, (d) and (e) are the feature maps learned from the deep lay-

rs of conv_4 and conv_5, which mirror the local characteristics

hat have low readability and are difficult for understanding. 

.3. The integrated CNN performance 

The comparisons among the original Alexnet, GoogleNet, SFA,

FGN, and the proposed ensemble CNN are carried out under sev-

ral criteria. The results are summarized in Table 1 . Here, P_N is

he number of model parameter, L_N is the model depth; F_T is the

orward propagation time, B_T is the error backward propagation

ime, CLF_T is the average time required to identify a single im-

ge, Tr_T is the model training time. In addition, Error denotes the

lassification error rate over the testing dataset1 and voting weight

epresents the voting weights of the SFA and SFGN models to form

he ensemble classifier. 

As one can see from the Table 1 , the P_N of Alexnet is over

0 0 0 times of SFA and GoogleNet is almost 7 times of SFGN. While

_T of different models are of the same order of magnitude, B_T is

ramatically different due to the great disparity in the numbers of

odel parameters to be learned in the models compared. In ad-

ition, the CLF_T of SFA is only about 13.5% of Alexnet’s CLF_T,

nd SFGN is about 6 times faster than GoogleNet. This implies

hat SFA and SFGN are more suitable in practical real-time applica-

ions. Moreover, the total training times of SFA and SFGN are both

ess than one day, while the Alexnet and GoogleNet require about

wo days each. Finally, the classification error rate of SFA suffers

 1.05% drop compared to the original Alexnet, while the drop is

.11% from GoogleNet to SFGN. However, the short training time

ost and the fast classification speed of SFA and SFGN allow for

he construction of the ensemble classifier that easily outperforms

oth Alexnet and GoogleNet in terms of training time and classifi-

ation accuracy. 

In addition to Alexnet and GoogleNet, we also compare the pro-

osed method with the state-of-the-art. Specifically, the original
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Fig. 8. Loss and accuracy curves of the SFA model and SFGN model. 

Fig. 9. Weights maps of Conv_1 layer and Conv_2 layer. (a) The 48 filters kernels of size 11 × 11 × 3 learned by the Conv_1 layer on the 227 × 227 × 3 input images; (b) The 

128 convolution kernel of size 5 × 5 × 1 learned by the Conv_2 layer on the 27 × 27 × 3 feature of the Maxpool_1 layer. 

Table 1 

Comparison of different models under several criteria. 

Name P_N F_T/ms B_T/ms F_B_T/ms CLF_T/s Tr_T/h Error (%) Voting weight 

Alexnet [ 10 ] 58,649,189 69 138.131 207.84 0.578 43 2.26 –

SFA [ 24 ] 50,489 13.485 8.223 20.965 0.078 22.47 3.21 0.48 

GoogleNet [ 12 ] 6,797,700 40.733 85.935 127.012 0.496 42.42 1.79 –

GoogleNet-2loss 3,497,700 33.285 70.397 103.801 0.356 40.24 1.57 –

SFGN 1,017,700 21.665 46.430 68.203 0.081 21.17 1.88 0.52 

Ensemble-classifier 1,068,189 35.150 54.653 89.168 0.159 43.64 1.11 –
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Table 2 

Comparison of the ensemble classifier and the state-of-the-art. 

Methods Features Accuracy1 Accuracy2 

Two-step way [ 4 ] 88.78% 

Bayes [ 3 ] 70.07% 54.16% 

SVM [ 31 ] Handcrafted 82.73% 80.22% 

Softmax 75.68% 72.64% 

Random Forest 83.46% 75.41% 

Single-layered NN [ 9 ] 94%–97% 

DNN [ 16 ] 95.2% 

Alexnet [ 10 ] 97.74% 94.10% 

GoogleNet [ 12 ] Learned 98.21% 95.86% 

GoogleNet-2losses 98.33% 95.91% 

SFA [ 24 ] 96.99% 93.75% 

SFGN 98.12% 95.81% 

Ensemble classifier 98.89% 96.72% 

w  

a

 

t  

[  

t  

m  
rchitectures of Bayes classifier [3] and two-step way [4] are se-

ected in the comparison. These methods need to detect the blur

egion first, before classifying the obtained blur areas. In our algo-

ithm, however, the blur detection was accomplished in the pre-

rocessing stage and only the whole blurred patches are sent to

he classifiers for identification. Another classification method se-

ected in the Gaussian radial basis function-based support vector

achine (SVM) classifier, which has been successfully applied to

lassifying the ovarian cancer images in our preliminary work [31] .

n this paper, we will focus on its blur image classification perfor-

ance. Other commonly used classifiers such as Softmax and Ran-

om Forest are also chosen for comparison. In our implementation,

ayes [3] , SVM [31] , Softmax and Random Forest are all designed

ith 35 handcrafted blur features including statistic features, tex-

ure features and spectrum features, and then are evaluated based

n our testing datasets. In addition, the single-layered NN [9] , DNN

ramework [16] are selected for comparison as well. The classifica-

ion accuracy rate is employed to determine the classification per-

ormance and is defined by 

 ccuracy = 

N correct 

N 

× 100% (23) 

total 
here N correct denotes the number of correctly classified samples,

nd N total indicates the total number of test samples. 

The comparison results are summarized in Table 2 . Note that

he classification accuracies of two-step way [4] , single-layered NN

9] and DNN [16] included in the table are the ones reported in

heir respective references, while the accuracy data of the other

ethods are obtained by testing on our datasets. Note that Accu-
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racy1 and Accuracy2 stand for the accuracy results based the test-

ing dataset1 and testing dataset2, respectively. Note also that refer-

ence [9] only provides the accuracy of single-layered NN for single

class classification task, while the other methods demonstrate the

classification accuracy for all four blur types considered. 

It can be observed from Table 2 that the prediction accuracy

( > 90%) of learned feature-based methods is generally superior to

the ones ( < 90%) whose features are handcrafted. The classification

accuracy of SFA on the simulated testing dataset is 96.99%, which

is slightly lower than Alexnet’s 97.74%. Nevertheless, it is still bet-

ter than the DNN model of 95.2%. The classification accuracy of

SFGN is 98.12%, which outperforms the SFA model but less than

the classification performance of the ensemble classifier of 98.89%.

In addition, the classification performance of SFA, SFGN and the

ensemble classifier on the real/natural blur datasets are 93.75%,

95.81% and 96.72%, respectively. Clearly, the ensemble classifier

has the best classification accuracy on the real/natural blur im-

age dataset. Consider also that the experiment data in Table 1 have

shown the outstanding classification accuracy, computational effi-

ciency and real-time performance of the ensemble classifier com-

pared to Alexnet and GoogleNet. Therefore, we claim that the en-

semble classifier of SFA and SFGN is a highly efficient and accurate

tool for blur image classification. 

5. Conclusion 

In this paper, an highly accurate and efficient ensemble classi-

fier denoted as SFA + SFGN is developed for handling the classifi-

cation of defocus blur, Gaussian blur, haze blur and motion blur

in digital images. The novel base learners in the proposed en-

semble model, Simplified-Fast-Alexnet (SFA) and Simplified-Fast-

GoogleNet (SFGN), are created by pre-pruning the original Alexlet

and GoogleNet, respectively. In addition, to provide a benchmark

dataset for blur image classification task, a new public blur im-

age dataset - BHFID (Beihang University Fuzzy Image Database)

containing naturally blur photographs and artificially blurred im-

ages is created and can be accessed at http://doip.buaa.edu.cn/info/

1092/1073.htm . To accomplish this, we propose and apply an im-

prove the simple linear iterative clustering (SLIC) method to gener-

ate super-pixels and segment the actual blurred regions in an im-

age. This ensures the applicability of the samples in the dataset for

online blur classification. Using this labeled dataset, we design and

train our SFA + SFGN classifier to perform the task of identifying

and classifying four types of blur images. To investigate the perfor-

mance of the proposed ensemble classifier, we test it, along with

Alexnet, GoogleNet and other blur classification methods, based

on the simulated blur image dataset and naturally blurred image

dataset in BHFID. The experiment results demonstrate the superior

performance of the proposed ensemble classifier in classification

accuracy. As of computational efficiency, the model training time

of our ensemble classifier (44.84 h) is comparable to Alexnet and

GoogleNet, while the average single image classification time of

0.159 s by the ensemble classifier dramatically outperforms Alexnet

and GoogleNet. Therefore, the success of the proposed ensemble

classifier makes us believe that this work provides an effective

compression and ensemble method, which can facilitate the use

of the notable complex neural networks in variety of applications. 
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