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Abstract—Large amount of annotated images with rich 
variations are needed to train a deep network for detecting 
instance object in unstructured environment. Addressing the 
problem that the artificial acquisition and manual annotation is 
time-consuming, the generative deep deconvolutional neural 
network (GDDNE) to increase and diversify training data 
through the supervised learning strategy is created in this paper. 
Specifically, our network can not only generate with different 
styles such as shift, zoom, brightness and other superimposed 
transformations, but also interpolate generate the new ones 
between given viewpoints images in training samples. With 180 
viewpoints realistic images in training samples: 30 rotation 
angles in plane and 6 angles of depression, our network can 
finally generated 1000 diversified viewpoint images and 21 kinds 
of data transformations for each instance object. Abundant 
experiments demonstrate that the remarkable performance of 
our generative network used in the generation task of large 
magnitude. 

Keywords—image generation, deconvolutional neural 
network, training data. 

I. INTRODUCTION 

The diversified training data – large amount of annotated 
images with rich variations are needed to train a deep network 
for detecting in unstructured environment. Traditionally, such a 
massive work must be taken via realistic shooting images for 
instance objects in random background [1]. Nevertheless 
artificial acquisition and manual annotation in such way is 
expensive and time-consuming. Besides, many expansion 
works of training data such as data augmentation can only 
transform the illumination or saturation of images, but cannot 
change the posture information of instance objects in 
unstructured environment. Therefore, the generative model, 
which has the ability to generate new data samples by learning 
the joint probability distribution of the data samples and the 
labels, can complete the expansion work of different viewpoint 
images. In this paper, we use the generative model with end-to-
end training strategy to learn a mapping relationship between 
the real images and the low dimension description such as 
viewpoints, then generate new images with designated 
description directly without complicated induction process. 

According to different training strategies, generative 
models can be divided into three categories: supervised 

generation models, unsupervised generative models and semi-
supervised generative models. In recent years, supervised 
generation models revalued again because of the acquisition of 
big data, the development of computer hardware, and the 
appearance of Convolutional Neural Network (CNN). Since 
the Deconvolutional Neural Network (DNN) [2] has been 
proposed for reconstruction of image features, an increasing 
amount of papers using such similar architecture to generate 
images. For examples, Tejas D. Kulkarni et al. [3] have 
designed the Deep Convolutional Inverse Graphics Network 
(DCIGN) to generate three-dimensional image of face; 
Dosovitskiy et al. [4][5] use a deconvolutional neural network 
to generate multi class chair images; The Deep Convolutional 
Generative Adversarial Networks (DCGAN) to produce high 
fidelity indoor images have designed by Alec Radford et al. [6] 
In addition, semi-supervised generative models and 
unsupervised generative models have also been widely 
developed. Usually, Semi-supervised generative models only 
need partially label samples, and the maximum expected 
algorithm is used to estimate parameters, which means that 
Gaussian Mixed Model (GMM) [7] and Hidden Markov Model 
(HMM) [8] or other maximum expected models can be used as 
a base classifier. As for unsupervised generative models, the 
prominent examples are Restricted Boltzmann Machine (RBM) 
[9] and Deep Boltzmann Machines (DBM) [10], which can 
achieve statistical modeling between its complex architecture 
and massive unlabeled dataset. However, semi-supervised 
generative models are usually applied to some small models, 
because they usually require a large amount of calculations 
during training process. And as compared with the supervised 
generative models, unsupervised generative models usually 
cannot accurately control the features of the generated images.  

In what follows, we propose to use a kind of supervised 
generation model termed Generative Deep Deconvolutional 
Neural Network (GDDNE) to address the problem of 
increasing and diversifying training data, i.e. generating 
different viewpoints images and versatile data augmentation 
changes with limited key realistic samples in the training 
process. Difference from the generative works mentioned 
above, we not only just generate different images with the 
network, but also concentrate on how to guarantee the 
magnitude and the accuracy of the generated images to satisfy 
our specific application task for building a large-scale training 
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Fig. 1. The Overall architecture of the GDDNE system. 

data with labels used in a deep network. Moreover, the images 
generated with supervised generation models [3]-[6] are one 
class of object such as human face, which may cause 
interference or category change phenomenon in the process of 
network training due to the different between-class features. 
Conversely, our GDDNE system ensure the specific instance 
object images generated, which effectively reducing the 
complexity of training process and improving the accuracy of 
generated images. The following will elaborate our GDDNE 
system including the realistic samples information, network 
architectures, network training and performance, as well as 
experimental results and analysis. 

II. PROPOSED METHOD 

To build annotated scenes with rich variation through the 
limited realistic labeled images, our GDDNE system is a three 
stage pipeline shown in Fig.1: 1) make the realistic samples 
information of specified instance objects (the labels and the 
key realistic images for training the GDDNE, the ground truth 
images for experimental test); 2) train the GDDNE to 
automatically output the qualified viewpoint images with data 
augmentation; 3) make segmentation masks of the images 
generated to extract the only part of instance objects; pick them 
into complex background images and automatically record the 
annotation files. 

A. Provide realistic samples information 

We need to provide the key realistic training samples that 
contain diversified viewpoint images of specified instance 
objects with labels to train the GDDNE, as well as supply the 
ground truth realistic samples to test in experiment. Thus, in 
order to complete the collection of diversified viewpoint 
images, firstly we put a turntable at constant speed in white 
background, then place instance objects on the turntable that 
rotate around its longitudinal axis. At the same time, a camera 
is installed at a fixed position,  then take videos about instance 
objects that rotate 360 degrees with different depression angles 
of the camera. Each video sequence contains many realistic 
images, which can used as the ground truth realistic images. 

Besides, we only select limited ground truth images as the 
key realistic training images for training the GDDNE, making 
the GDDNE can generate new viewpoint images between the 

limited given ones. In order to reduce the complexity of 
training process, we adjust the size of images to 128 128  
pixel. What’s more, we also make all segmentation masks ( s ) 
to extract the only part of images containing instance objects 
before input the key realistic training samples to the GDDNE 
for training, so as to avoid the interference of background and 
further optimize the training process of network. 

Moreover, the labels in the key realistic training samples 
are the low dimensional descriptions of images, which consist 
of two vectors: v – the rotation angle and depression angle 
corresponding to the camera position (represented by their sine 
and cosine values); t – the parameters of data augmentation 
transformations. The randomly parameter vector t can gain six 
kinds of data augmentation changes: shift vertically or 
horizontally (0 to one-tenth of image size), zoom (100% to 
135%), stretching vertically or horizontally (0 to one-tenth of 
image size), in-plane rotation (0 to 12 degrees), brightness 
(35% to 300%), saturation (35% to 300%). In training process, 
randomly parameter t are added to increase the variation of 
training samples and reduce overfitting. 

B. The GDDNE architecture 

The network structure of the GDDNE is shown in Fig.2. 
We give the key realistic training samples with the 

labels 1 1={( , ),...,( , )}N ND v t v t and the key realistic training 

images 1{ ,..., }N
RGB RGBG x x  as the input of the GDDNE.  

Then, three parts of the GDDNE structure are described in 
detail: firstly, a shared, re-encoding network to obtain the high 
dimensional hidden representation ( , )h v t from the input 

parameters D is built by fully connected layers FC1 to FC5. 
The two input vectors v and t are independently go through two 
layers of FC1 and FC2 with 512 neurons, then the outputs are 
concatenated with 1024 neurons. FC3 and FC4 both with 1024 
neurons follow this independent processing, resulting in the 
output response of the layer FC5. Finally, FC5 outputs a 
16384-dimensional vector and reshape the vector into 8x8 
multichannel feature map. 

Secondly, the reconstruction of image features is realized by 
the structure of three deconvolutional layers with 4x4 filters. 
And a convolutional layer with 3x3 filters follows each of them. 
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Fig. 2. The network structure of the GDDNE. 

In order to reconstruct high dimensional images from 8x8 
feature representation, we need to increase the space span of 
feature size, which is opposite to the pooling process in usual 
CNN. As illustrated in Fig.3, set up the parameters of each 
deconvolutional layer: kernel size=4, stride=2, pad=1, which 
can increases 2 times of the width and the height of the feature 
maps. Finally, the output of last deconv4 layer is 128x128 

feature representation, which means the RGB image ( )RGBi h  

has successfully predicted according to the high dimensional 
hidden representation ( , )h v t .  

In addition, a Rectified Linear Unit (ReLU) to accelerate the 
convergence rate of the network follows each layer in GDDNE, 
except the output layer. 

Input: 2x2

Kernel size: 4x4

X =

Output: 4x4
Stride=2

Pad=1

Sum where output 
overlaps

 

Fig. 3. Illustration of the calculation process of deconvolution. 

Finally, to fit the generated images and the realistic images 
in training samples, minimizing the Squared Euclidean 
Distance (SED) between them that defined by formula (1).  

 
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i i i i i
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SED g h v t t x s
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               (1) 

C. Network training details 

In order to training the GDDNE, we use the Caffe 
framework [11] of CNN to run on. 

The network parameters W are consist of all layer weights 
and biases. It trained by minimizing the loss function, as shown 
in formula (2). In our experiments, the loss function is chosen 
as the SED error. 
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We use Adaptive Moment Estimation (Adam) algorithm [12] 
to update network parameters W to reach the optimal value. 
The Adam algorithm can obtain independent self-adaptive 
learning rate changing at any time as shown in formula (5) to 
get faster convergence speed and better convergence 
performance, instead of maintaining a single learning rate in 
classical training method of Stochastic Gradient Descent 
(SGD). The way to update network parameters W is shown in 
formula (3)(4)(6): 
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where tm and tv are the biased estimation of first and second 

moment, tm


and tv


are the error correction estimation of 
first and second moment, 

1 and
2 are the exponential 

decay rate,  is the initial learning rate, and  is the 
regularization parameter. 

We set 
1=0.9 , 

2 =0.999 and -6=10 according to the 

empirical value. We start with a learning rate =0.0005 , then 
reduce it by a half after every 100000 iterations. After 1000000 
iterations the training process stopped. 

According the input dimensionality of each layer, we use 
Gaussian noise distribution to initialized the network 
parameters W, making the variance of the parameters of each 
layer consistent, as suggested by Kaiming He et al. [13] 

III. EXPERIMENT RESULTS AND ANALYSIS 

In order to test the proposed approach, we perform a 
number of experiments to verify the learning and the 
generative ability of GDDNE and finally determine the type of 
data augmentation and appropriate corresponding quantitative 
relationship between the limited key realistic training samples 
and the diversified viewpoint images generated. 



TABLE I.  MEASURE OF SIMILARITY BETWEEN IMAGES GENERATIED AND REALISTIC IMAGES OF TEN SPECIFIED INSTANCE OBJECTS  

Similarity 
measurement 

Object category 

Car 
model 

CD case 
Deter- 
gent 

Extinguis
her 

Glasses 
box 

Oscillo-
graph 

Pill case 
Storage 

box 
Tea caddy Vacuum 

HS 97.319% 97.659% 98.360% 97.707% 97.908% 97.008% 98.449% 96.768% 98.391% 98.639% 

RMSE 0.00929 0.01104 0.00995 0.00396 0.00313 0.00657 0.00547 0.00456 0.00482 0.00497 

CC 0.93479 0.98787 0.98838 0.95334 0.95057 0.96949 0.98026 0.98899 0.96957 0.99480 

 

A. Learning ability of GDDNE 

We select 180 viewpoints of each instance object as the key 
realistic training samples: 30 rotation angles in plane (interval 
12 degrees) and 6 angles of depression (0, 15, 30, 45, 60, 75 
degree). 10 specified instance objects as shown in Fig.4: car 
model, CD case, detergent bottle, fire extinguisher, glasses box, 
oscillograph, pill case, storage box, tea caddy and vacuum. 
They are common in daily life but are obviously different in 
appearance features. For each instance object, we train the 
GDDNE to generate 180 different viewpoint images that are 
completely consistent with the key realistic training images. 
We use three types of image similarity measurements to 
estimate the quality of images generated compared with the 
realistic images, and the results are shown in TABLE I. The 
three types of image similarity measurements are the 
Histogram Similarity (HS), the Root-mean-square error 
(RMSE) per pixel and the Pearson Correlation coefficient (CC), 
according to formula (7)-(9) separately: 
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where n is the number of image pixels, g iv and t iv  are the 

number of pixels corresponding to each gray value in the 

histogram of image generated and true image, ig and it are the 

per pixel value in the image generated and the realistic image. 

 

Fig. 4. 10 specified instance objects images (car model, CD case, detergent 
bottle, fire extinguisher, glasses box, oscillograph, pill case, storage box, 
tea caddy and vacuum). The first row is the realistic training samples, 
and the second row is the segmentation masks. 

TABLE I. shows that the HS between the images generated 
and their realistic images of 10 specified instance objects are 
all above 96.5%, indicat1ing that the network can learn the 
distribution of image color and shape features well. Besides, 

the RMSE per pixel between the images generated and their 
realistic images of 10 specified instance objects are all less than 
0.012, which means that GDDNE has a good generation 
accuracy. Meanwhile, the CC can be used to describe the 
degree of linear correlation between two distributions, and the 
value of 10 specified instance objects are all above 0.93, 
verifying the positive correlation distribution between the 
images generated and the realistic images is satisfied. To 
summarize, it can be seen that GDDNE has a good learning 
ability and can reconstruct the feature distribution of the 
images in training samples according to the results of three 
different types of image similarity measurements. 

B. Interpolation between rotation angles in plane 

We measure the ability of interpolation generation of the 
GDDNE from two aspects: the accuracy of images generated 
with different numbers of key realistic training samples; the 
range of images generated in diversified rotation angles in 
plane on the premise of guaranteeing the generative precision. 

1) Different numbers of key realistic training samples 
We select one of the specified instance objects (tea caddy) 

for representative verification experiments. We use a turntable 
at a speed of 24.6 round / sec, a camera with a resolution of 
1920 1080  and a frame rate of 50fps. For each instance 
objects, we can finally obtain 1230 realistic images at each 
depression angle of the camera. Such images as the ground 
truth realistic images used in the verification of subsequent 
experiments. We then varied the numbers of the key realistic 
training samples (180, 90, 48, 24) and train the GDDNE as 
before to generate 1230 viewpoint images corresponding to the 
ground truth realistic images under the conditions of 0, 30 and 
60 depression angle respectively. 

Fig.5 shows some representative examples of rotation angle 
interpolation generated. For 30 and 15 rotation angles in plane 
under each 6 depression angle in the key realistic training 
samples, the effect of angle interpolation generated is 
satisfactory: the interpolation generative effect is smooth and 
the feature details are well preserved. However, starting from 8 
rotation angles, the GDDNE fails to produce satisfactory 
interpolation images, which means some pattern features are 
lost. 

In Fig.6, we plot the average RMSE of the generative 
images under different numbers of key realistic training 
samples.  Obviously,  increasing  the  training  samples can 
improve the generation performance of GDDNE, and when the 
key training samples increase to 15, GDDNE has been able to 



 

Fig. 5. The leftmost and the rightmost column of images are in realistic 
training samples, while all intermediate ones are the result of 
interpolation. Each group of four rows represents depression angle of 0, 
30, 60 (top-down), and the number of different training samples is 180, 
90, 48, 24 (top-down row in each group). 

 

Fig. 6. The average RMSE of the images generated under different numbers 
of key realistic training samples.  

obtain a better result. In addition, the RMSE of the images 
generated decreases with the increase of depression angle, 
because the feature informations such as the shape or pattern 
contained in different depression images are changeable. For 
tea caddy, the area of the black cover in image will become 
larger with the increase of depression angle. 

2) The range of new viewpoint images generated 

This section explores the generative capacity of the 
GDDNE. We still select the instance object of tea caddy and 
use the 180 key realistic training samples to train the GDDNE, 
making the network generate images in 180, 360, 540, 720, 
1080 and 1230 rotation angles in plane under the condition of 
0, 30 and 60 depression angle respectively. 

In  Fig.7,  we  plot  the  average  RMSE  of  the images 
generated in different numbers of rotation angles in plane. 
Obviously, the RMSE of the images generated begin to 
fluctuate after 900 rotation angles in plane. In addition, a 
similar situation with Fig.6 is that the RMSE of the generated 
images will decrease with the increase of depression angle, 
moreover, the RMSE of average pixel between the different 
generation numbers of angle images is fluctuating more 
smoother under the condition of 30 and 60 depression angle. 

 

Fig. 7. The average RMSE of the images generated in different numbers of 
rotation angles in plane. 

Overall, taking the tea caddy as representative example, 
when training with other specified instance objects, the 
GDDNE can also show a great generation effect with a 
corresponding quantitative relationship between the key 
realistic training samples and the viewpoint images generated: 
more than 90 viewpoints in training samples and within 1200 
viewpoint images generated.  

C. Data augmentation transformations 

Through the experiment, we find that the GDDNE can 
generate six kinds of transform images – shift horizontally or 
vertically, zoom, stretching horizontally or vertically, in-plane 
rotation, brightness and saturation,  as well as the superposition 
effect of different transformations.  

In order to guarantee its transformation accuracy, we only 
select one or two kinds of combination transformation forms, 
some parts are shown in Fig.8. We find that the quality of the 
images generated with 1-2 arbitrary transformations is 
generally great and satisfies the requirements of our specific 
application task for building a large-scale training data with 
labels used in a deep network for detecting instance object in 
unstructured environment. 



 

Fig. 8. Each row shows one or two kinds of combination of transformations 
images: stretching, brightness, saturation, stretching+brightness, in-
plane rotation+saturations, brightness+saturation(top-down). The fifth 
column of images are the realistic non-transformed training samples. 

D. Building a large-scale annotated training data 

We collect some indoor scene datasets as complex 
background images to provide unstructured environment 
information for specified instance objects. For example, the 
Indoor Scene Recognition Dataset [14], the SUN Dataset [15] 
and the RGB-D Scenes Dataset [16], a total of 16000 images. 
Then we select some scene that suitable for our 10 specified 
instance objects, such as laboratory, classroom, kitchen, 
conference room and so on. 

According to the experimental results above, we finally 
obtain 1000 diversified viewpoint images for each instance 
object generated by the GDDNE, with 180 viewpoint images in 
realistic training samples: 30 rotation angles in plane and 6 
angles of depression. At the same time, we arbitrarily 
superimpose 1-2 data augmentation transformation forms for 
each images, and the totally order of magnitude 

is  1 2
6 61000 1 10 220000C C     . Some parts of annotated 

images in training data are shown in Fig.9, and the annotation 
files contain the starting coordinates of boundary frame 
(

minX and
minY ), the sizes of the instance objects (width and 

height) and the category of the specified instance objects. 
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Fig. 9. Examples of annotated images in training data (storage box). The top 

row is images without data augmentation transformations and the second 
row is with transformations. 

IV. CONCLUSIONS 

In this article, a Generative Deep Deconvolutional Neural 
Network (GDDNE) based on the supervised training strategy is 
proposed for handling the time-consuming issue of artificial 

acquisition and manual annotation when obtain a large-scale 
annotated training data for a network to detect the instance 
object in unstructured environment. The experiment results 
demonstrate that with 180 key realistic training samples, the 
GDDNE can automatically generate 1000 diversified 
viewpoint images and 21 kinds of data transformations for each 
instance object with great quality. Moreover, an interesting 
direction for our future research is training the GDDNE to 
generate more feature change forms, such as different texture 
or shelter situation. 
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