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Abstract
Ultrasonography has become an essential part of clinical diagnosis owing to its noninvasive, and real-time nature. To assist
diagnosis, automatically segmenting a region of interest (ROI) in ultrasound images is becoming a vital part of computer-aided
diagnosis (CAD). However, segmenting ROIs on medical images with relatively low contrast is a challenging task. To better
achieve medical ROI segmentation, we propose an efficient module denoted as multiscale attentional convolution (MSAC),
utilizing cascaded convolutions and a self-attention approach to concatenate features from various receptive field scales.
Then, MSAC-Unet is constructed based on Unet, employing MSAC instead of the standard convolution in each encoder and
decoder for segmentation. In this study, two representative types of ultrasound images, one of the thyroid nodules and the
other of the brachial plexus nerves, were used to assess the effectiveness of the proposed approach. The best segmentation
results from MSAC-Unet were achieved on two thyroid nodule datasets (TND-PUH3 and DDTI) and a brachial plexus nerve
dataset (NSD) with Dice coefficients of 0.822, 0.792, and 0.746, respectively. The analysis of segmentation results shows that
our MSAC-Unet greatly improves the segmentation accuracy with more reliable ROI edges and boundaries, decreasing the
number of erroneously segmented ROIs in ultrasound images.
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Introduction

Ultrasonography is characterized by its low cost, safety,
real-time imaging capability and has become an indis-
pensable imaging modality in medical diagnosis, regional
anesthesia, and intraoperative navigation. Moreover, it
is commonly utilized in conjunction with other medical
imaging methods, such as magnetic resonance imaging
(MRI) and computed tomography (CT) in clinical diag-
nosis and therapy. However, the image quality of ultra-
sound images is relatively poor due to various limiting
factors, such as noise and speckle, making it more diffi-
cult to utilize for subsequent diagnosis processes.1

Specifically, the clinical applications of medical ultra-
sound images, such as fast and accurate diagnosis of
malignant tumors or regional anesthesia, rely on the deli-
neation of a target’s boundaries. Therefore, although the
acquisition of the region of interest (ROI), such as

suspicious lesion areas, and targeted nerve areas, is not
the end goal by itself, only when the ROI is obtained can
a subsequent diagnosis be made. However, manually
acquiring ROI is time-consuming and, because it often
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requires the expertise of an operator, is also costly.
Therefore, to assist in clinical diagnosis and therapy, it is
crucial to employ computer-aided diagnosis (CAD) tech-
nology to detect and segment desired ROIs. CAD pro-
vides sonographers with an accurate and objective
second opinion quickly while also decreasing their heavy
workload, reducing the risk of misdiagnosis due to
exhaustion. To date, according to human intervention,
the ultrasound image segmentation methods applied in
CAD can be categorized as semiautomatic methods2–4

and fully automatic methods.5–7

The semiautomatic methods require operator interac-
tion to mark the ROI either using seeds or assigning cor-
responding features manually, and the knowledge and
experience of the clinician must generally be relied upon.
Semiautomatic segmentation methods can be subdivided
into image information-based models and learning-based
models. In the former models, low-level image informa-
tion and data-distribution features are utilized to com-
plete segmentation, such as regional growth,8 graph-cut
and Gaussian process-based,4,9,10 and active contour.11

Gonzalez et al.,4 for instance, utilized the graph cut and
wavelet transform method to segment brachial plexus
nerves, and the dice coefficient reached 60.57%. In the
latter models, traditional machine learning, as a typical
technology employed in the learning-based segmentation
approaches, classifies pixels or image blocks by manually
extracting features based on statistical knowledge.
Moreover, the classifiers are constructed on various algo-
rithms, such as decision tree (DT), and support vector
machine (SVM). Chang et al.,12 for example, manually
extracted 41 features and employed the DT algorithm to
segment thyroid nodules in six ultrasound images, and
the segmentation accuracy was 97.5%. In brief, although
semiautomatic segmentation methods can contribute to
the development of CAD to some extent, manually
extracting effective features is a complex process, and
there are many subjective factors involved in determining
the conditions for initial settings. Simultaneously, the
initialization process has a massive effect on the segmen-
tation results. In other words, migrating from one seg-
mentation task to another is difficult.

On the other hand, fully automatic ROI segmentation
approaches that can extract image features without man-
ual intervention are drawing increasing attention as a
solution to overcome the disadvantages of semiautomatic
methods. Undoubtedly, the currently popular deep learn-
ing is a typical data-driven learning technology to achieve
automatic ROI segmentation, which utilizes deep convo-
lutional neural networks (CNNs) to automatically extract
and exploit more abstract and high-level nonlinear fea-
tures. Ma et al.5 suggested a cascade CNN model that
combines two CNNs and a new splitting approach to
achieve thyroid nodule segmentation. The receiver

operating characteristic area under the curve was 98.51%.
In an ordinary way, the traditional CNN segmentation
methods usually feed blocks of pixels into a CNN
through a sliding window and employ fully connected
layers for ROI segmentation, leading to significant
repeated calculations and low computational efficiency.

In recent years, with the rise of the full convolution
network (FCN),13 which effectively avoids the redundant
computation problem of traditional CNNs in image seg-
mentation by skipping connections, end-to-end architec-
tures without fully connected layers have attracted a
great deal of attention in image-segmentation methods.14

Ronneberger et al.,15 for instance, proposed the Unet
architecture for medical image segmentation, based on
the encoder and decoder from FCN. In this architecture,
context information is captured from a contracting path,
while a symmetric expanding path is employed to ensure
exact localization. Unet is becoming a prominent basic
architecture for medical ROI segmentation tasks.6,16Chu
et al.16 performed thyroid nodule segmentation using a
marker-guided Unet model, and this interactive segmen-
tation method utilized four manually labeled endpoints
of the long and short axes of the nodules to guide seg-
mentation. The experiments were tested on 510 ultra-
sound images with a Dice coefficient of 95.76%. Kakade
and Dumbali6 proposed a brachial plexus segmentation
study based on Unet. By employing Unet and a postpro-
cessing algorithm based on principal component analysis,
the segmentation Dice coefficient reached 68.83%.
Certainly, there have been multiple instances of Unet and
its modified CNNs being employed to segment ROIs in
medical ultrasound images.6,16 The most widely utilized
ones are Res-Unet17 as well as Unet++.18 Res-Unet is
constructed by adding a residual connection based on the
Unet architecture.17 The well-known residual module can
effectively tackle the problem of training challenges
caused by network depth and may improve CNNs for
acquiring deeper medical ROI characteristics, and the
insertion of residual connections might help to accelerate
convergence while also avoiding CNN deterioration. On
the other hand, from improving the connection method
between convolutional layers, the densely connected con-
volutional networks (DenseNet) utilized shortcuts to
expand the depth of CNNs for gradient propagation.19

Combining the principle of DenseNet, Zhou et al. pre-
sented Unet++, connecting the first to the fourth layers
in the Unet architecture,18 and this architecture has the
benefit of allowing the CNN to learn more features asso-
ciations between various layers to some extent.

As everyone knows, semantic segmentation is a pixel-
level classification task, and how to efficiently couple
more dimensional receptive field features when adopting
CNNs is the most vital hints for obtaining precise ROIs.
It seems to be that small receptive fields are better at
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capturing detailed features, such as edges, boundaries and
texture features, while large receptive fields are more capa-
ble of extracting features from the entire ROI. Therefore,
in order to more effectively combine multi-scale features to
achieve ROI segmentation, Chen et al. proposed Deeplab
V3,20 which employ atrous convolution in cascade or in
parallel to capture multi-scale context by adopting multiple
atrous rates. Furthermore, they proposed to augment
Atrous Spatial Pyramid Pooling (ASPP) module, which
probes convolutional features at multiple scales. Specically,
Chen et al. proposed Deeplab V3+,21 extends Deeplab V3
by adding a simple yet effective decoder module to refine
the segmentation results. They applied the depthwise separ-
able convolution to both ASPP and decoder modules,
resulting in a faster and stronger encoder-decoder network.
Deeplab V3+ was validated on PASCAL VOC 2012 and
cityscape datasets, with performance of 89.0% and 82.1%,
respectively.

However, since most of the convolution kernels uti-
lized in contemporary end-to-end CNNs (for instance,
Unet,15 Res-Unet,17 and Unet++18) are of a single size,
the size of the perceptive field reflected by the extracted
features remains constant, leading to insufficient ability
to obtain and utilize multiscale features.

In our study, to overcome the aforementioned diffi-
culties, a novel model is developed for automatically seg-
menting ROIs in medical ultrasound images, which not
only maintains the end-to-end basic architecture but also
effectively addresses the problem that state-of-the-art
CNNs are inadequate for multiscale feature fusion. In
particular, two representative ROI in ultrasound images,
thyroid nodules and brachial plexus nerve, are selected
for segmentation in our work. The main contributions of
our study are as follows:

1. The multiscale attentional convolution (MSAC)
module is proposed as a solution to the problem
of inadequate extraction and exploitation of
multi-scale features by typical CNNs. MSAC
acquires features with various receptive fields by
performing cascade convolution operations and
deploys a self-attention approach to effectively
merge these spatial multiscale features, simulating
the cognitive capacity of sonographers.

2. The MSAC-Unet, which applies MSAC instead
of standard convolution in each encoder and
decoder, is developed on the backbone of Unet.
As a lightweight architecture, it achieves competi-
tive performance on both thyroid nodule and
brachial plexus nerve segmentation tasks com-
pared with several state-of-the-art CNNs.

The remainder of this paper is arranged as follows.
Section 2 introduces the justification for segmenting

thyroid nodules and brachial plexus nerves, as well as the
datasets employed in our study. Section 3 describes the
architecture and principle of MSAC and MSAC-Unet,
focusing on an automatic ROI segmentation model. The
experimental results and implementation details are pre-
sented in Section 4. In Section 5, we discuss the results,
performance, and comparison with the results of other
methods. Finally, the conclusion is given in Section 6.

Data and Material

Types of ROI Segmentation

In our work, to pursue higher accuracy in automatically
accomplishing ROI segmentation in clinical competen-
cies (i.e., diagnosis and therapeutic targeting, anatomy
identification) in ultrasound images, for example, thyroid
nodules,3,5,22 brachial plexus nerves,4,6 breast lesions,7

hearts and lungs,23 and so on, we focus on tackling two
typical types of tasks, that is, thyroid nodule and brachial
plexus nerve automatic segmentation.

It is well known that a thyroid nodule, a common clin-
ical ailment, is defined as a lump inside the thyroid gland
and occurs at high frequencies in the adult population.
The incidence of thyroid cancer accounted for approxi-
mately 567,233 cases worldwide in 2019, ranking ninth in
incidence.24 In clinical practice, unnecessary surgical
therapy due to undetermined thyroid nodules leads to
the waste of medical resources and increases patient suf-
fering. However, the application of CAD for the auto-
matic segmentation of thyroid nodules can not only help
doctors find the specific location of nodules but also pro-
vide the margin, shape and aspect ratio of nodules which
are important for the subsequent diagnosis of thyroid
nodules. Hence, driven by clinical needs, automatic seg-
mentation should be developed to ensure subsequent
classification and treatment.

The brachial plexus nerve, on the other hand, is the
anterior branch of the fifth cervical spine (C5) to the first
thoracic spinal nerve (T1) and is responsible for control-
ling the sensation and movement of the upper limbs,
shoulders, back and chest. To supply anesthetic in the
right place, in other words, to correctly locate the nerve
structures, one of the effective measures is ultrasound
imaging, which enables a noninvasive visualization of
the nerve and peripheral structure, as well as reducing
the risk of block failure, nerve trauma and local anesthe-
sia toxicity. Furthermore, preoperative local anesthesia is
guaranteed by brachial plexus nerve segmentation in
ultrasound images, which mainly aims to minimize surgi-
cal damage, decrease patient suffering, and accelerate
postoperative recovery. Therefore, developing and
improving methods for automatically segmenting ultra-
sound images of nerves has become a research hot spot
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to correctly place the needle when employing regional
anesthesia or intraoperative navigation in tumor cutting.

In summary, the acquisition of reliable ROIs in ultra-
sound images can ensure better quality to meet the
requirements of subsequent clinical applications.
Specifically, ultrasound images of nodules and nerves
not only have their own clinical application function but
also reflect two representative types of ultrasound ima-
ging patterns: nodule images are blurry and low contrast,
whereas nerve images are relatively more textural and
have higher contrast. Therefore, thyroid nodules and
brachial plexus nerves were chosen as the main types of
ROI segmentation in our study.

Image Acquisition and Simple Pre-processing

In this research, we utilize three datasets for ROI seg-
mentation in medical ultrasound images, including two
thyroid nodule datasets and a brachial plexus nerve
dataset.

For the thyroid nodule datasets, the first dataset is
denoted as TND-PUH3 (Thyroid Nodule Database-
Peking University Third Hospital, TND-PUH3). All
images were acquired using an ultrasound machine
(Phillips, HITACHI, GE) with the probe frequency set
as 5 to 17MHz and labeled by the sonographers of
Peking University Third Hospital. A total of 3771 ultra-
sound images were gathered from 2360 patients after sur-
gery or fine needle aspiration (FNA), among which 1316

are benign and 2455 were malignant. The data set con-
tains 1 to 2 ultrasound images per patient, with the probe
in either transverse or longitudinal directions. It con-
tained 639 male cases and 1721 female cases, with an
overall average age of 38.47 years. In terms of different
age groups, 563 cases were less than or equal to 30 years
old, 944 cases were between 30 and 50 years old, 746
cases were between 50 and 70 years old, and 107 cases
were older than 70 years old. All the thyroid instances
involved in this dataset were examined via pathological
examination and covered nodules of different sizes. The
second dataset is the public database DDTI (Digital
Database Thyroid Image, DDTI) proposed by Lina
Pedraza et al. of the Faculty of Medicine of the National
University of Colombia in Bogotá.25 The database con-
tains 480 ultrasound images of 299 patients, and each
ultrasound image is annotated by the operator. The
annotation file is saved as an .xml file, which contains
the outline of the nodule, the TI-RADS information,
and so on. A total of 463 ultrasound images with corre-
sponding nodule contour annotations were employed in
our ROI segmentation research. As shown in Figure 1(a)
and (b), the ultrasound image we utilized in segmenta-
tion experiments is presented above, and the nodule con-
tour labeling is displayed below. It is necessary to note
that before performing the segmentation experiments of
thyroid nodules, we cropped nonessential information
from the original ultrasound images, including device
name, acquisition time, image source, and so on.

Figure 1. ROI segmentation samples. In the mask image, the white area represents the target area, and the black area represents the
background area: (a) TND-PUH3, (b) DDTI, and (c) NSD.
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Meanwhile, the ultrasound brachial plexus nerve seg-
mentate on public dataset NSD (Nerve Segment
Database, NSD) from Kaggle Competition is employed
in our research. The NSD database includes 5633 sam-
ples, each of which contains an original ultrasound image
and its corresponding mask image. It is worth emphasiz-
ing that only 2322 samples contain brachial plexus nerves
in the NSD. As illustrated in Figure 1(c), the top image is
the original ultrasound image, while the bottom image is
the corresponding mask image. It is important to note
that none of the data sets used in this study violated
Health Insurance Portability and Accountability Act
(HIPAA) and Institutional Review Board (IRB)
requirements.

Proposed Method

As is well known, image segmentation is the technology and
process of dividing an image into several specific regions
with unique properties to propose the object of interest. In
segmentation, feature extraction is a special dimensionality
reduction process, the main purpose of which is to obtain
the relevant information from the low-dimensional spatial
information expression of the original data.

Multiscale Attentional Convolution

Combined with clinical knowledge, multiple receptive
field feature fusion is essential for medical ROI segmen-
tation, but the complexity and the overfitting risk of
CNN will increase if multiple filters with different recep-
tive fields are combined straightforwardly. The multi-
scale attentional convolution (MSAC) module, as an
innovative algorithm, is proposed in our work to effi-
ciently handle the issue of spatial multiscale features
combinations, mainly consisting of cascaded convolution

operations and a self-attention approach of feature map
channels, as illustrated in Figure 2.

MSAC utilizes cascade convolutions to generate fea-
tures with multiple receptive field scales. C ið Þ( � ) repre-
sents the i-th convolution operation. If the input of the
i-th convolution operation is x, its output is expressed as:

C ið Þ(x)=Wix ð1Þ

where Wi represents the weights of the convolution oper-
ation, and C 1ð Þ, C 2ð Þ, � � �, and C nð Þ indicate the n-th con-
volution operation. The feature map of the n-th
convolution operation is denoted as I nð Þ:

I nð Þ xð Þ=C nð Þ
8C n�1ð Þ

8 � � � 8 C 1ð Þ xð Þ=
Yn

i= 1

Wi

 !
x ð2Þ

where
Qn

i= 1

Wi

� �
is the convolution weight expressed as a

decomposition. It is essential to emphasize that C ið Þ is a
linear layer and that there is no nonlinear activation or

normalization operation. The feature map I nð Þ can reflect
the features of the receptive field at various scales.
Assume that the spatial dimension of the i-th convolu-
tion kernel is Si 3 Si, where Si is the height and width of

convolution kernel Wi. I nð Þ(x) is the feature map obtained
from the cascade convolution operation, and its size of
the effective receptive field is expressed as:

Xn

i= 1

Si � n+ 1

 !
3

Xn

i= 1

Si � n+ 1

 !
ð3Þ

where 1 ł n ł N , N represents the number of cascade
convolutions performed by the MSAC module, that is,
the number of various scales of receptive field features
merged.

Figure 2. The architecture of multiscale attentional convolution (MSAC).
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The feature maps I ið Þ �ð Þ are concatenated at the chan-
nel axis to form the cascaded feature map Z:

Z = ½I 1ð Þ, I 2ð Þ, � � � , I Nð Þ� ð4Þ

To make I ið Þ �ð Þ have the same spatial size, all the
above convolution operations require appropriate pad-
ding operations. The height and width of I ið Þ �ð Þ are
expressed by H and W, respectively, and the number of
channels for each scale is denoted as P. Therefore, the
spatial size of I ið Þ �ð Þ is H3W3P, and the spatial size
of cascaded feature map Z is H3W3NP. Assuming
Q=NP, then the channel dimension of Z can be repre-
sented by Q. Although the cascaded feature map Z
reflects features from multiple scales and channels, if Z is
employed directly as the ultimate convolution operation
output, it might increase the risk of overfitting. Our pro-
posed MSAC can effectively integrate features from N
different receptive field scales by utilizing a channel self-
attention approach, imitating the process of sonographers
to obtain ROI. In clinical practice, the sonographers will
weigh the overall ROI features as well as detailed features
such as edges, boundaries and texture features to identify
the location of ROI based on their clinical experience.26

In our MSAC module, the channel self-attention
approach can be applied to the cascaded feature map Z
as follows:

Y =E(Z)� Z ð5Þ

where E is the attention map, and � represents the
Hadamard product. The spatial dimension of Y is the
same as that of Z, which is H3W3Q. For the attention
map E �ð Þ, the ECA (Efficient Channel Attention, ECA)
method is deployed,27 which is defined as:

E(Z)=s(C1Dk(G(Z))) ð6Þ

where C1Dk represents a one-dimensional convolution
with kernel size k, s is the sigmoid function, and G(Z)
represents the global average pooling operation of the
cascaded feature map Z in the channel axis.

G(Z)=
1

WH

XW ,H

i= 1, j= 1

Zij ð7Þ

ECA is suitable for MSAC because it focuses on mod-
ule efficiency while also being able to capture informa-
tion across channels to ensure performance. The
coefficients of the one-dimensional convolutional kernel
are the learnable parameters for the channel attention
weights.27 ECA is also easier to tune and apply, and the
only hyperparameter is the one-dimensional convolu-
tional kernel size, which can be altered adaptively by the
number of channels in the CNN. It is worth pointing out
that the MSAC is a separate linear convolutional layer,

so both normalization and nonlinear activation blocks
can be inserted after it. It is because of its universality
that we have the idea of integrating it into typical seg-
mentation networks to optimize the segmentation perfor-
mance. In summary, our MSAC module addresses the
problem of inadequate extraction and utilization of
multi-scale features by typical CNNs by performing cas-
caded convolutional operations to obtain features with
various receptive fields and deploying a self-attentive
approach to efficiently merge these spatial multi-scale
features.

MSAC-Unet

As mentioned before, the encoder-decoder architecture
of Unet consists of a downsampling part and an upsam-
pling part, allowing for end-to-end training with a small
number of images. Furthermore, Unet effectively inte-
grates deep and shallow features through skip connec-
tions, and the architecture is stable, making it ideal for
medical ROI segmentation where the number of samples
is insufficient. However, Unet only applies the same size
filters in each encoder and decoder, limiting the potential
to extract multiscale information. Consequently, MSAC-
Unet is proposed here to execute automatic medical ROI
segmentation, which both retains the great basic archi-
tecture of Unet and substitutes traditional convolution
with MSAC module in all encoders and decoders to
achieve better multiscale feature fusion. The architecture
of MSAC-Unet is shown in Figure 3, where the MSAC
module applied to Unet architecture is illustrated.
Compared with the original Unet, our proposed MSAC-
Unet replaces the standard convolutional layers and
batch normalization (BN) layers are inserted in each
encoder and decoder.

In MSAC-Unet, the convolution operation C ið Þ( � ) is
set as follows. For the first convolution operation C 1ð Þ,
we utilize a 1 3 1 convolution to reduce the computa-
tional cost. For the remaining convolution operations
C ið Þ, we employ a 3 3 3 convolution. The MSAC mod-
ule utilizing cascade convolutions to generate multiscale
features necessitates more convolutional operations, and
it is employed in each encoder and decoder, as shown in
Figure 3. Thus, the computing load will greatly increase
if standard convolutional operations are employed.
Instead of the standard ones, the depthwise separable
convolution (DSC)28 is adopted to reduce the number of
parameters, which dramatically improves the efficiency
of the MSAC module. DSC splits the standard convolu-
tion operation into depthwise convolution and pointwise
convolution, and the parameters are approximately one-
third of the standard convolution. Thus, the 3 3 3 con-
volution of C ið Þ includes depthwise convolution Cd and
pointwise convolution Cb.
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C ið Þ( � )=
Cb ið Þ

Cb 8 Cd ið Þ
i= 1

i= 2, 3, � � � ,N

�
ð8Þ

where Cb represents a 1 3 1 convolution and Cd repre-
sents a 3 3 3 convolution. N refers to the number of
scales in the MSAC module. Therefore, the height and
width Si of the convolution kernel Wi are given as:

Si =
1

3

i= 1

i= 2, 3, � � � ,N

�
ð9Þ

Through equations (3) and (9), the receptive field sizes
at different scales can be determined as 1 3 1, 3 3 3,
and (2N-1) 3 (2N-1), respectively. Combined with the
resolution of the ultrasound image utilized for segmenta-
tion, in our proposed MSAC-Unet, we set the scale num-
ber N to 4.

The number of channels in MSAC-Unet follows the
design of Unet, with cascaded feature maps of 32, 64,
128, 256, and 512. Therefore, the number of output chan-
nels of the MSAC module is Q 2 32, 64, 128, 256, 512f g.
The size of the one-dimensional convolution kernel in
ECA, that is, the hyperparameter k, can be adaptively
determined as a nonlinear function related to the number
of channels,27 which is defined as:

k =
log2(Q)

g
+

b

2

����
����
odd

ð10Þ

where Q is the number of input feature map channels and
aj jodd represents the odd number closest to a. Meanwhile,

g and b are set to 2 and 1, respectively.27 According to
the equation (10), k corresponding to the number of
channels Q 2 f32, 64, 128, 256, 512g is given as:

k =
3

5

Q= 32, 64, 128

Q= 256, 512

�
ð11Þ

Through a self-attention approach, the MSAC effec-
tively captures information from multiple scales of the
receptive fields and combines these multiscale features.
MSAC is adopted to substitute the standard convolution
in the Unet architecture, forming MSAC-Unet with
parameters less than 15% of that of the original Unet,
and this is the result of MSAC adopting DSC. Table 1
shows the parameter count and computational costs for
the CNNs we employed in this study. To assess effective-
ness of our MSAC module and the superiority of the
lightweight CNN MSAC-Unet, we compare MSAC-
Unet model with current representative CNNs, as well as
MSAC-Res-Unet.

Evaluation Indicator

In this study, we perform 10-fold cross-validation on
each dataset. Each dataset is separated into nonoverlap-
ping parts, with a 9:1 ratio between the training and vali-
dation sets and the test set being the remaining portion

Table 1. Parameter Count and Computational Costs.

Architecture Parameters FLOPs

Unet 7,759,521 84.69G
Res-Unet 8,214,881 89.17G
Unet++ 9,041,601 209.36G
Deeplab V3+ 2,752,881 9.87G
MSAC-Unet 1,091,197 8.70G
MSAC-Res-Unet 1,534,781 13.05G

Figure 3. The architecture of MSAC-Unet.
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of the dataset. There are 500, 50, and 909 ultrasound
images utilized to assess the performance of CNNs on
the test sets of TND-PUH3, DDTI, and NSD, respec-
tively. The test set in each database remains constant to
compare the segmentation results of different CNNs for
the same ROI. Moreover, different metrics should be
employed to analyze the performance of the CNN. Thus,
we adopt the Dice coefficient, sensitivity and IoU to
assess segmentation performance.

Dice=
2TP

2TP+FP+FN
ð12Þ

Sensitivity=
TP

TP+FN
ð13Þ

IoU =
TP

TP+FP+FN
ð14Þ

The Dice coefficient is a function of the similarity
measure, which is usually employed to calculate the simi-
larity of two samples. The values of the above evaluation
indicators are between 0 and 1. As shown in Figure 4,
TP is the true positive area, TN is the true negative area,
FP is the false-positive area, and FN is the false negative
area.

In our study, the loss function adopted in the model
training process is Dice loss, which is defined as:

Dice loss= 1� 2 ŷ\ yj j+ 1

ŷj j+ yj j+ 1
ð15Þ

where ŷ is the output of the CNN and y is the ground
truth. The ‘‘+1’’ in the equation prevents the denomina-
tor from being zero. The Dice loss function has great
performance when positive and negative samples are
unbalanced.

Experimental Results

Implementation Details

The experiments based on deep learning are accom-
plished on the Ubuntu 18.04.1 system with an NVIDIA
GeForce 3090 GPU, and the deep learning framework is
TensorFlow 2.4. The size of the input image in CNNs is
240 3 240 3 1, and all input images are pre-processed
into data with a mean of 0 and variance of 1. During the
training of CNNs, the batch size is set to 4, the number
of epochs is 150, the optimizer is Adam, and the learning
rate is 5 3 1024, learning decay rate is 0.8, learning
decay step is 10. The model of the validation set with the
greatest Dice coefficient is saved to evaluate the perfor-
mance of the CNN.

Segmentation of Thyroid Nodules

In this part, we focus on evaluating the accuracy of our
proposed MSAC-Unet for thyroid nodule segmentation.
Therefore, we perform comparative experiments of
MSAC-Unet with Unet, ResUnet, Unet++, Deeplab
V3+, and MSAC-Res-Unet on the TND-PUH3 and
DDTI datasets. The Dice coefficients, sensitivities, and
IoUs of these CNNs, with 95% confidence intervals, are
reported in Tables 2 and 3. The Dice coefficient of
MSAC-Unet is 3.9% higher than that of Unet on the
TND-PUH3 test set; on the DDTI test set, the Dice coef-
ficient of MSAC-Unet is 4.4% higher than that of Unet,
confirming the effectiveness of MSAC. Compared with
other CNNs, MSAC-Unet achieves the best segmenta-
tion performance on both the TND-PUH3 and DDTI
datasets.

As illustrated in Figures 5(a) and 6(a), the MSAC-
Unet converges at a faster rate during the training pro-
cess. Although the dice coefficient of its training set is
lower than other CNNs, it still exceeds 0.9, which is
approximately 0.05 lower than others. In addition, the
MSAC-Unet can achieve the lowest loss on the valida-
tion set, as low as 0.183 in TND-PUH3 and 0.259 in
DDTI. Unet, Unet++, Res-Unet, and Deeplab V3+
have higher Dice coefficients during the training process,
while the overfitting of these CNNs is more serious.
Owing to the limited number of samples in the medical
image database, the performance of these CNNs in both
validation and test sets is inferior to that of MSAC-
Unet, which has fewer parameters.

Figure 7 displays the segmentation results of thyroid
nodules on the test set, and these segmentation results
are obtained from the same fold in 10-fold cross-valida-
tion. In the TND-PUH3 database, there is only one thyr-
oid nodule in each ultrasound image. However, in the
DDTI database, some of the ultrasound images are
stitched from different angles of the nodule images so

Figure 4. The fundamental definitions of evaluation metrics.
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Figure 5. The training dice curve and val loss curve on the TND-PUH3 dataset. On the left: (a) Training dice curve, On the right: (b) Val
loss curve. Both the train dice curve and the validation loss curve are for the same training and validation sets. In addition, the epoch of
each network model used for testing is indicate in the validation loss curve.

Table 3. Performance and Corresponding 95% Confidence Intervals (CIs) of Different Models Used in Our Study on the DDTI Dataset.

Dataset DDTI

Metric Dice Sensitivity IoU

model Mean (S.D.) CI Mean (S.D.) CI Mean (S.D.) CI

Unet 0.748 (0.008) [0.742, 0.754] 0.759 (0.014) [0.749, 0.768] 0.637 (0.013) [0.628, 0.646]
Res-Unet 0.755 (0.007) [0.751, 0.760] 0.752 (0.017) [0.740, 0.764] 0.629 (0.008) [0.623, 0.635]
Unet++ 0.732 (0.010) [0.725, 0.739] 0.746 (0.015) [0.736, 0.757] 0.607 (0.017) [0.589, 0.620]
Deeplab V3+ 0.743 (0.010) [0.735, 0.751] 0.751 (0.011) [0.743, 0.759] 0.613 (0.010) [0.606, 0.619]
MSAC-Unet 0.792 (0.008) [0.787, 0.798] 0.826 (0.014) [0.816, 0.837] 0.673 (0.013) [0.663, 0.682]
MSAC-Res-Unet 0.769 (0.010) [0.762, 0.776] 0.777 (0.013) [0.768, 0.786] 0.640 (0.010) [0.630, 0.649]

Number format of performance: Mean (Standard Deviation, S.D.).

Table 2. Performance and Corresponding 95% Confidence Intervals (CIs) of Different Models Used in Our Study on the TND-PUH3
dataset.

Dataset TND-PUH3

Metric Dice Sensitivity IoU

model Mean (S.D.) CI Mean (S.D.) CI Mean (S.D.) CI

Unet 0.783 (0:010) [0.775, 0.790] 0.819 (0:006) [0.814, 0.823] 0.682 (0.009) [0.675, 0.689]
Res-Unet 0.775 (0.007) [0.769, 0.780] 0.813 (0.015) [0.802, 0.823] 0.674 (0.008) [0.669, 0.680]
Unet++ 0.760 (0.010) [0.753, 0.767] 0.800 (0.011) [0.792, 0.808] 0.657 (0.010) [0.649, 0.664]
Deeplab V3+ 0.761 (0.008) [0.754, 0.766] 0.803 (0.015) [0.792, 0.814] 0.653 (0.009) [0.646, 0.659]
MSAC-Unet 0.822 (0.005) [0.818, 0.826] 0.847 (0.012) [0.839, 0.856] 0.718 (0.007) [0.713, 0.723]
MSAC-Res-Unet 0.796 (0.011) [0.788, 0.804] 0.832 (0.010) [0.825, 0.840] 0.700 (0.011) [0.692, 0.708]

Number Format of Performance: Mean (Standard Deviation, S.D.).
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that two nodules appear in one image. As shown in
Figure 7, the segmentation results of MSAC-Unet are
good regardless of the presence of several nodules in the
ultrasound images. For thyroid nodules with ambiguous
boundaries, there are many isolated nonconnected
regions in the segmentation results of Unet, Res-Unet,
Unet++, and Deeplab V3+ . Replacing the standard
convolution with MSAC in CNNs will effectively amelio-
rate this problem. MSAC-Unet employs cascaded convo-
lution in each codec and decoder to capture features with
various receptive field sizes, whereas the original Unet
only deploys 3 3 3 convolution kernels, implying that
the extracted receptive field size of the convolution oper-
ation is 3 3 3 in each codec and decoder. In comparison
to the features extracted by Unet, MSAC-Unet concate-
nates individual features and incorporates information
from multiple scales, resulting in better edge and bound-
ary features. In addition, although Deeplab V3+ com-
bines features of different receptive fields by ASPP, the
weight set for different features is the same when realiz-
ing feature fusion In contrast, our MSAC-Unet utilizes
the ECA self-attentiveness mechanism in the MSAC
module, which can adaptively assign different weights to
the features of different receptive fields, achieving better
ROI segmentation performance. The segmentation dice
coefficients of Deeplab V3+ is 6.1% and 4.9% lower
than our MSAC-Unet on the TND-PUH3 and DDTI
datasets, respectively.

As shown in Table 4, we compared our models with
other methods by investigating several typical studies of
ultrasound thyroid nodules segmentation. On the open

dataset DDTI, Nguyen et al. (2022)29 employed Unet
with attention module to achieve thyroid nodule segmen-
tation, but this model only applied attention module in
the encoders. However, our proposed MSAC adopted
attention approach in each encoder and decoder, and the
MSAC-Unet obtained higher Dice coefficient. In addi-
tion, compared with the marker-guided Unet (MGU-
net) which was proposed by Chu et al. (2021),16 although
the segmentation performance was improved by MGU-
net, manually labeling four points for each ultrasound
image before the training process is a labor-intensive and
time-consuming process that requires expert involve-
ment. Analogously, despite traditional CNNs with fully
connected layers (2017)5 have high segmentation perfor-
mance in thyroid nodule segmentation, these methods
usually feed blocks of pixels into a CNN through a slid-
ing window and employ fully connected layers for seg-
mentation, resulting in serious repeated calculations and
low computational efficiency. Meanwhile, each pixel can
only be classified by local features in these medthods,
which leads to insufficient reliability of the segmentation
results. In conclusion, the proposed MSAC-Unet can
better balance the segmentation efficiency and accuracy,
which has the value of practical clinical application.

Segmentation of Brachial Plexus Nerve

The aim of this part is to assess the efficacy of our pro-
posed MSAC-Unet for brachial plexus nerve segmenta-
tion in ultrasound images. In addition to comparative
experiments on the NSD dataset, we also evaluate the

Figure 6. The training dice curve and val loss curve on the DDTI dataset. Both the train dice curve and the validation loss curve are for
the same training and validation sets. On the left: (a) Training dice curve, On the right: (b) Val loss curve. Both the train dice curve and
the validation loss curve are for the same training and validation sets. In addition, the epoch of each network model used for testing is
indicate in the validation loss curve.
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neural segmentation performance of MSAC-Unet with
other methods in public research.

The evaluation metrics of different CNNs on the
NSD test set, with 95% confidence intervals, are shown
in Table 5. On the NSD test set, the Dice coefficient of
MSAC-Unet is 2.7% higher than that of Unet.
Compared with other models, similarly, the MSAC-Unet
achieves the best segmentation performance.

Figure 8 shows the segmentation results of the bra-
chial plexus nerve with different CNNs in test set.
Although brachial plexus nerve ultrasound images have
higher contrast and more textural features than thyroid
nodule ultrasound images, there are 3311 ultrasound
images excluding the brachial plexus in the NSD dataset
with a total of 5633 samples. As a result, accurate seg-
mentation of brachial plexus nerves with the NSD

Figure 7. The segmentation results of thyroid nodules with different CNNs. From top to bottom: the original images, ground-truth
masks, details of target area, and the segmentation results of Unet, Res-Unet, Unet++, Deeplab V3+ , MSAC-Unet, MSAC-Res-Unet.
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dataset is relatively more challenging than with thyroid
nodules in our study. In the NSD test set, there were 545
ultrasound images without brachial plexus nerves, and
the CNNs we utilized erroneously segment these ultra-
sound images to various extents. Summarizing the seg-
mentation results, Unet, Res-Unet, Unet++, Deeplab
V3+, MSAC-Unet, and MSAC-Res-Unet segmented on
average 127, 103, 116, 109, 58, and 67 erroneous ROIs,
respectively. As seen from Figure 8 and Table 5, MSAC-
based CNNs effectively decrease the probability of seg-
menting incorrect ROIs and improve the segmentation
performance since the MSAC module incorporates addi-
tional features with various sizes of receptive fields.

As shown in Table 6, we compared our models with
other methods by investigating several representative
researches of ultrasound nerve segmentation. To the best
of our knowledge, the best Dice coefficient achieved by
the Unet-related algorithm on the test set is 0.721 in the
public report under the NSD database. To address the
problem of inconsistent samples, that is, some ultrasound
images in the NSD dataset contain no brachial plexus
nerves, Van Boxtel et al.30 used a CNN to classify the
ultrasound images that contain brachial plexus nerves
before performing ROI segmentation. However, the Dice
coefficient obtained by this method is still 2.5% lower
than our proposed MSAC-Unet. This demonstrates that

our MSAC-Unet is superior for ROI segmentation in
medical ultrasound images.

Calculation Speed Comparison

The deployment of the segmentation model to tomogra-
phy devices is the ultimate goal of implementing ultra-
sound medical image segmentation, and since real time is
crucial, the computational speed is a key metric to assess
the effectiveness of the segmentation model. Specifically,
50,500, and 909 ultrasound images were randomly
selected from the TND-PUH3, DDTI, and NSD data-
sets, respectively, as the test sets. The average test time
comparison for segmenting one ultrasound image of a
thyroid nodule or brachial plexus nerve is shown in
Table 7. The testing time of MSAC-Unet is shorter than
that of the other models, and segmenting an ultrasound
image takes only 2.68ms on average, which is approxi-
mately 10% shorter than that of the Unet. Consequently,
the medical ultrasound image segmentation method
based on the MSAC-Unet model proposed in this paper
has the potential for clinical application, and it can
quickly provide an accurate and objective second opinion
on ROI segmentation.

Discussion

Though time-consuming and laborious, manual segmen-
tation is often regarded as the gold standard in clinical
medicine because of its accuracy, but the quality of the
segmentation result completely depends on the experi-
ence and knowledge of the operator, thus the segmenta-
tion results are difficult to reproduce. In this study, we
mainly focused on fully automatic methods for thyroid
nodule and brachial plexus nerve ROI segmentation, it is
expected to obtain accurate, reproducible and timesaving
segmentation results on low contrast, ambiguous bound-
aries ultrasound medical images. Inspired by the fact that
the combination of multiscale information is consistent

Table 4. The Dice Coefficient of Different Models in the
Segmentation of Thyroid Nodules.

Model Database Dice

Unet (ours) DDTI 0.748
MSAC-Unet (ours) DDTI 0.792
Unet29 DDTI 0.555
Unet + Attention block29 DDTI 0.596
DenseNet 16116 Non-public 0.917
MGU-net16 Non-public 0.958
DT algorithm12 Non-public 0.975
Cascade CNN5 Non-public 0.985

Table 5. Performance and Corresponding 95% Confidence Intervals (CIs) of Different Models Used in Our Study on the NSD dataset.

Dataset NSD

Metric Dice Sensitivity IoU

model Mean (S.D.) CI Mean (S.D.) CI Mean (S.D.) CI

Unet 0.719 (0.005) [0.715, 0.722] 0.796 (0.010) [0.788, 0.802] 0.673 (0.007) [0.668, 0.678]
Res-Unet 0.725 (0.008) [0.720, 0.731] 0.818 (0.009) [0.812, 0.825] 0.692 (0.010) [0.684, 0.699]
Unet++ 0.703 (0.013) [0.694, 0.712] 0.762 (0.011) [0.794, 0.770] 0.682 (0.010) [0.675, 0.689]
Deeplab V3+ 0.718 (0.008) [0.713, 0.725] 0.812 (0.011) [0.803, 0.820] 0.688 (0.008) [0.683, 0.694]
MSAC-Unet 0.746 (0.007) [0.741, 0.751] 0.843 (0.008) [0.837, 0.849] 0.714 (0.006) [0.709, 0.718]
MSAC-Res-Unet 0.734 (0.009) [0.728, 0.741] 0.830 (0.005) [0.826, 0.833] 0.702 (0.009) [0.696, 0.709]

Number format of performance: Mean (Standard Deviation, S.D.).
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Figure 8. The segmentation results of brachial plexus nerves with different CNNs. From top to bottom: the original images, ground-
truth masks, details of target area, and the segmentation results of Unet, Res-Unet, Unet++, Deeplab V3+, MSAC-Unet, MSAC-Res-
Unet.
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with clinical diagnostic experience, we propose the MSAC
module, which utilizes cascaded convolutions and self-
attention approaches to effectively aggregate spatial recep-
tive field features and apply it to the Unet architecture.

To assess the superiority of the MSAC module, we
compared the segmentation performance of Unet with
MSAC-Unet, as well as ResUnet with MSAC-Res-Unet.
According to Figure 7, MSAC-Unet and MSAC-Res-
Unet can obtain better edge and boundary features of
ROI in the segmentation task of thyroid nodules. This is
certainly because the MSAC module can successfully
combine spatial multiscale features. Moreover, we can
tell that the ROIs obtained from the MSAC-based CNN
are connected regions compared with those of other

CNNs. Figure 8 illustrates the segmentation results of
the brachial plexus nerve, which demonstrate that the
MSAC-based CNNs can effectively decrease the possibil-
ity of incorrect ROI segmentation. Moreover, as shown
in Figure 9, the segmentation performance of the MSAC-
based CNNs is better than that of the original CNN for
both segmentation tasks of thyroid nodules and brachial
plexus nerves. It is hence not surprising that the MSAC
module serves as a universal module that not only
improves ROI segmentation performance but can also be
applied to any task designed to combine spatial multi-
scale information.

To evaluate the effectiveness of MSAC-Unet, we fur-
ther compare MSAC-Unet with current representative
segmentation CNNs, as well as the MSAC-Res-Unet. As
shown in Figures 5 and 6, despite having a lower Dice
coefficient than other CNNs during the training process,
our lightweight MSAC-Unet outperforms other typical
CNNs during both validation and testing, demonstrating
the superiority of MSAC-Unet in mitigating the risk of
overfitting. In addition, the accuracy results shown in
Tables 2, 3 and 5 are encouraging. Specifically, the Dice
coefficients of MSAC-Unet are 0.822, 0.792 and 0.746 in
TND-PUH3, DDTI and NSD, respectively. Although
the dilated convolution in DeeplabV3+ is able to
acquire features of different receptive fields to some
extent, there are some shortcomings in feature fusion.
Our MSAC-Unet retains the structure of Unet and
replaces the standard convolution with our proposed
MSAC module. Using the self-attention mechanism in
the MSAC module, our MSAC-Unet can better integrate
features at different scales in the feature fusion process
and achieve more precisely segmentation. Meanwhile,
while MSAC-Unet converges more slowly during train-
ing than MSAC-Res-Unet (as shown in Figures 5 and 6),
the architecture of MSAC-Unet is less complicated and
contains fewer parameters (from Table 1). Therefore,
MSAC-Unet can obtain superior segmentation perfor-
mance compared with MSAC-Res-Unet. Moreover, our

Table 6. The Dice Coefficient of Different Models in the
Segmentation of Nerves.

Model Database Dice

Unet (ours) NSD 0.719
MSAC-Unet (ours) NSD 0.746
Graph Cut + Wavelet transform4 Non-public 0.606
SLIC + Gaussian process10 Non-public 0.652
Unet + PCA6 NSD 0.688
Unet without PCA6 NSD 0.670
Unet + hybrid model30 NSD 0.721

Table 7. The Comparison of Testing Time of Different Models.

Model Average test time/ms

Unet 2.969
Res-Unet 3.171
Unet++ 3.268
Deeplab V3+ 2.863
MSAC-Unet 2.680
MSAC-Res-Unet 2.796

Figure 9. Comparison of segmentation performance of MSAC-based CNNs with original CNNs on the datasets we employed.
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MSAC-Unet enables faster automatic segmentation of
ROI in ultrasound images, according to Table 7.
Furthermore, once our proposed method has been
assessed in a larger database, it can be deployed as a
diagnostic tool in clinical practice, as the technique can
obtain a more correct second objective opinion on ROI
segmentation.

Additionally, compared with state-of-the-art segmenta-
tion network models in recent years, our MSAC-Unet can
also achieve better comprehensive segmentation perfor-
mance. Chen et al.,16 for instance, proposed the marker-
guided Unet model for the segmentation of thyroid
nodules, which achieved great segmentation performance.
However, manually labeling four points for each ultra-
sound image is a labor-intensive and time-consuming pro-
cess. For brachial plexus nerves segmentation, Van Boxtel
et al.30 used a cascade CNN to classify the ultrasound
images containing brachial plexus nerves and then perform
ROI segmentation employing Unet. However, the Dice
coefficient obtained by this method on the open dataset
NSD is still 2.5% lower than that of our proposed MSAC-
Unet. In summary, our MSAC-Unet can automatically
achieve ROI segmentation without manually labeling
points, and the segmentation performance, compared with
the reported state-of-the-art segmentation methods of thyr-
oid nodules and the brachial plexus6,16,30 so far, is effective
from the perspective of clinical application.

On the other hand, despite the fact that our proposed
tactic of merging multiscale information from a single
convolutional module is advantageous to obtain more
features from a small number of samples, resulting in bet-
ter segmentation performance, the ultrasound images
used in our experiments were not improved for higher
image quality but only cropped to remove extraneous
information. However, ultrasound images are affected by
speckle noise, which might influence the accuracy of seg-
mentation to some extent. Therefore, further research into
ways to pre-process ultrasound images for ROI segmenta-
tion to obtain images of greater quality is worthwhile.

Conclusion

Ultrasonography has irreplaceable benefits in clinical
practice, but ultrasound images have the drawbacks of
low contrast and noise. It is vital to automatically seg-
ment the ROI in ultrasound images to assist in subse-
quent applications. However, the existing typical CNN
has limited ability to extract and exploit multiscale fea-
tures. In our study, we integrated the designed MSAC
with Unet to refine the ROI segmentation. In the MSAC
module, we effectively combined spatial multiscale fea-
tures, utilizing cascaded convolution operations to gener-
ate features with various receptive field scales, and
employing not only an efficient self-attention approach

to execute feature fusion but also adopting the depthwise
separable convolution (DSC) with few parameters to
improve operation efficiency. As a result, a lightweight
CNN architecture denoted as MSAC-Unet, which
employs MSAC module to replace standard convolution
in Unet, can successfully detect richer features and
improve the segmentation accuracy. Experiments, for the
representative ROI segmentation tasks such as thyroid
nodule and brachial plexus nerve in ultrasound images,
show that the MSAC-Unet segmentation model not only
facilitates the acquisition of more accurate edges and
boundaries but also reduces the possibility of segmenting
incorrect ROIs. The proposed tactic of automatically
and quickly obtaining medical ROI through multiscale
information fusion can provide sonographers with a
more accurate objective second opinion while also reliev-
ing them of heavy workload, reducing the risk of mis-
diagnosis owing to exhaustion.
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