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Abstract—To detect instances in unstructured environment
with mobile system, we develop a light weight but accurate
learning model denoted as B-PA(BING Pruned Alexnet). Our
method first utilizes BING(Binarized Normed Gradient) to com-
pute bounding boxes, then builds a compressed network for
recognition by pruning neurons and cutting fully connected
layers on the original noted Alexnet. Addressing the problem
that the training samples for instance detection are limited and
of small variation, we extend the training data by combining
data augmentation with synthetic generation. Our B-PA model
takes only 5.3MB, which is 50 times smaller but with equivalent
or even higher accuracy than the original Alexnet. Experiment
results demonstrate that our method outperforms the state-of-art
instance detection algorithms on WRGB-D Dataset and GMU
Kitchen Dataset.

Index Terms—Object Instance Detection , Pruned Alexnet , Bi-
narised Normed Gradient , Data Extension; Synthetic generation

I. INTRODUCTION

Object instance detection refers to recognizing and locating
some specific objects in an image or video. It is a core func-
tionality in many applications of computer vision, especially
in the humanoid robotics. Imagine using an object detection
system for an everyday indoor environment like your family or
office. We do need such system to not only recognize different
kinds of objects, e.g. can versus box, but also have a keen eye
on specific instances, e.g. soda can versus coffee can. Thus,
how to detect the instance in unstructured environments with
complicated issues such as noise, occlusion, random variation
in illumination, scales and viewpoints is a big challenge. With
the amazing progress that has been made in visual recognition
by various deep networks, which can extract robust features
thus to adapt to the complex detecting environment, one may
expect to easily take an existing neural network model and
deploy it for such instance detection setting.

However, those state-of-the-art neural networks typically
have up to millions of parameters, they are generally both com-
putationally and memory intensive, making them difficult to
deploy on embedded systems with limited hardware resources
and power budgets. Furthermore, large amount of annotated
images with rich variations are needed to train a deep network
for detecting in unstructured environment. Traditionally, such
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a mammoth work must be taken via realistic shooting images
in random background. Nevertheless collecting and annotating
scenes in such way is expensive and time-consuming.

To address these problems, we refer to the study of two di-
rections. One is network compression, which does the research
to reduce computational cost and file volume of the network
model without sacrificing accuracy. For example, SqueezeNet
[1] matches AlexNet [2]-level accuracy on ImageNet with
50× fewer parameters. GoogLeNet-v1 [3] has only 53MB of
parameters, and it matches VGG [4]-level(533MB) accuracy
on ImageNet; Another one is data extension, which relates
to automatically generating new annotated training samples
by means of augmentation or synthesis. Data augmentation
such as color jittering and random scaling are frequently-used
schemes. Data synthesis involves either synthetically rendering
scenes and objects with CAD or superimposing object masks
into scene images [5].

Inspired by aforementioned achievements in network com-
pression and data augmentation, an efficient network archi-
tecture called B-PA (BING [6] +Pruned Alexnet [2]) together
with our training data extension strategy is put forward in
this paper. This novel method contributes to the solution for
detecting specific instance object by the following means:

1. An compressed network architecture B-PA, which reaches
AlexNet-level accuracy on object instance detection task with
50× fewer parameters is introduced. This compression is
carried out by preserving 75% neurons on each convolution
layer and removing the first two fully connected layers in orig-
inal Alexnet. Additionally, with the efficient region proposal
technique BING [6], we are able to narrow down the target
search space, thus to reduce computation load further.

2. An effective training data extension strategy, incorporat-
ing data augmentation with the synthesis method of synthet-
ically superimposing object masks into the scene images, is
employed in our work, which enables researchers to obtain
abundant training data with minimal effort.

II. DATA EXTENSION AND NETWORK COMPRESSION

The flowchart of our proposed method is shown as Fig. 1.
In the offline learning stage, we first extended the images
containing the target instance object by data synthesis and
augmentation then utilized all these augmented images along
with their annotation information to train the region proposal



model BING(binarised normed gradients [6]) and the deep
neuron network Pruned Alexnet. Once finishing offline train-
ing, a discriminative model called B-PA is obtained. In the
online detection stage, given a test image, proposals generated
by BING from the test image are fed into the Pruned Alexnet
and assigned to regions with different category labels. Finally,
all the proposals in the same category with high confidence
are combined together, thus the location of the object can
eventually be obtained.

Fig. 1. Flowchart of object instance detection using B-PA

A. Data Extension Strategy
Abundant training data is quite important for improving the

performance of deep networks, thus we introduced a simple
way to generate rich training data with minimal effort. It
includes two kinds of enhancement strategies: data synthesis
and data augmentation, as shown in Fig. 2.

1) Data Synthesis: Our data synthesis strategy can be
roughly summerized as extracting masks of objects, then
blending them with random backgrounds. However, naively
pasting object masks on scenes creates subtle artifacts, in-
cluding edge discontinuity and global inconsistency. Some
existing works, like [5], try hard to minimize both these
artifacts. Rather, our key insight is that only eliminating edge
discontinuity and ensuring patch-level realism can provide
enough training information for region proposal based detec-
tor. Therefore, we focus mainly on edge smoothing. When
pasting the masks of instance object on random backgrounds,
we extract contours of each instance object, then traverse
every contour point (x, y) for mean filtering in its 3 × 3
neighbourhood N(x,y). Then, the filtered valuef̄(x, y) of a
contour pixel is calculated as “(1)”.

f̄(x, y) =
1

3 × 3

∑
(s,t)∈N(x,y)

f(s, t) (1)

In this way, only the values of contour pixels are blurred,
which can mitigate boundary artifacts and maintain image
clarity.

2) Data Augmentation: Apart from superimposing the ob-
jects on random background, we also adopted data augmenta-
tion methods, such as color jittering and geometric alteration,
to enrich variation of training data.

Fig. 2. Examples of our extended training data.

Fig. 3. Overall structure of Pruned Alexnet.

B. BING-Pruned Alexnet

When designing the detection architecture for instance
objects, our chief concern is to decrease deep model size
and guarantee detection accuracy simultaneously. To achieve
this, we first utilized BING [6] to capture potential object
locations while reducing the searching space as far as possible,
then designed a compressed CNN model,Pruned Alexnet, for
recognition. The compact architecture consisting of 7 trainable
layers: 5 convolutional layers, 1 fully connected layer and 1
softmax layer shown in Fig. 3. Our pruning process is a two
stage pipeline to remove the fully connected layers, and to cut
down neuron number on each layer. The details of these two
steps will be elaborated in the following part.

1) Removal of Fully connected layers: The fully connected
layers (FCs) function as joint and transfixion to bridge the
convolutional layers with neural network classifiers. However,
the FCs have up to millions of parameters which account for
80% in the network. With this in mind, we propose to remove
two FCs and preserve the final one so as to alleviate parameters
redundancy and keep the bridge function at the same time.

However, when two FCs are removed, the dropout method
disappeared at the same time, which may render serious over-
fitting problem. From [7], the batch normalization(BN) [7]
can successfully resolve the overfitting problem. Therefore,
we propose to use BN method to play the role of dropout.
According to reference [7], the basic principle of batch nor-
malization is illustrated as follows:

X
(k)

norm =
X(k) − E[X(k)]√
V ar[X(k)] + ε

(2)

where X
(k)

norm is the kth normalized output of the con-
volution layers, E[X(k)] is the expectation over the batch
input samples, and V ar[X(k)] is the variance of the batch
input samples, ε is a micro-constant.Since BN can additionally
functions as normalizers, we replace the original local response
normalization layer (LRN) [2] with BN layer.

2) Reduction on neuron number: One key property of a
network architecture is its ability to produce a good represen-
tation of data. Redundant features not merely take up plenty



of computing resources, but also cause the network to be in-
terfered with insignificant details, thus, the more feature maps
are not the better. When applying deep learning network on
instance detection task, it does not need to recognize thousands
of objects (like in Imagenet [2]). Besides, instance objects
have more explicit appearance compared with a category of
objects, thus an instance detection network will need fewer
feature maps to describe targets. Therefore, the pre-pruning
method is adopted here to reduce the neuron number. To
trade off between accuracy and model size, we pruned the
neurons on each layer in original Alexnet at the ratio of 75%.
Finally, we obtained a concise instance detection model which
occupies only 5.3M but achieves Alexnet-level accuracy when
recognizing on GMU Kitchen dataset [8].

III. EXPERIMENTS

In this section, our proposed learning model B-PA is trained
under Caffe framework with NVIDIA-GTX-1080 and is eval-
uated on two challenging datasets: Washington RGB-D dataset
[9] , and GMU Kitchen Dataset [8].

A. Training Data Setup

1) WRGB-D Object Dataset.: Based on the provided RGB
images of four target instances(soda can, cap, cereal box,
flashlight) in WRGB-D Object Dataset [9], we adopted data
augmentation methods to enrich the sizes and lightning con-
ditions. We also utilized four scene images from WRGB-D
Scenes v2 dataset [9] for background blending. Finally, about
4200 synthetic images are generated for each instance using
all modes of data extension described in Sec II-A.

2) GMU Kitchen Training Set.: GMU Kitchen Dataset [8]
contains thousands of annotated images taken in 9 comlicated
scenes.The train-test split follows the division in [8], in which
six scenes are used for training and three are used for testing.
We call these training images realistic data. In order to enrich
the variation of our training data, another 4200 synthetic
images are generated for each instance using all modes of data
extension in Sec II-A.Noticeable,when we generate synthetic
data,the instances images are from BigBird Dataset [10], while
the background images are selected from WRGB-V2 [9]. And
we call these images extended data. In this experiment, we
utilized real data, real data+extended data,these two kinds of
data to train different detection network.

B. Detection Evaluation

Detection using our trained B-PA was implemented on
the test split of WRGB-D Dataset (Scenes v1) ,and GMU
Kitchen Dataset, which contains thousands of images taken in
common indoor environments, like laboratory areas, kitchen
rooms, and office workspace. The overall detection results are
illustrated in Fig. 4. It can be seen that our detection model can
achieve satisfying results in cluttered scenes, including size,
illumination, viewpoints changes as well as occlusion.

C. Comparison with state-of-art Methods

1) Comparison with Traditional Methods: To further elab-
orate the superiority of our method, we compare our algorithm
with two traditional detection methods: HOG+ SVM [9]
and B-CST [11]. Here, we report precision-recall curves and
average precision for evaluation, in which average precision is
an approximation of the area under the precision-recall curve.
It shows in Fig. 5 that the area under the red curve(representing
our B-PA method) is much larger than the two other curves,
which means that our approach can reduce false positives
significantly, meanwhile, keeping a relative high detection rate
compared with the other two methods.

2) Comparison with Deep Detection Models: For com-
parison with other deep detection models, we provide the
performance of our proposed B-PA, Faster RCNN [12], and
SSD [13] model trained solely on the real data in GMU.
Also, we did extra experiments using both real and extended
data (our extended data or synthetic data from [5])to train
the deep models. Table.I shows the evaluation results. As far
as the detection accuracy is concerned, our B-PA algorithm
is superior to SSD [13], but it is inferior to Faster RCNN
[12], when solely trained with real data. When we add our
extended data in the training set, our B-PA model can achieve
competitive result,80.55% mAP. However,it is still inferior to
Faster RCNN trained with SP-BL-SS. This is because our
B-PA uses the framework of Alexnet for classification,while
Faster RCNN adopt the VGG16 network,which has stronger
recognition ability. Still, these results can show that our pro-
posed training data extension strategy provides complementary
information to provide performance boost for detectors.

Noticeable,our model takes only 5.3 MB, while the other
two deep learning models(Faster RCNN and SSD) both occu-
pies over 500 MB of memory. Therefore, to trade off precision
and size, our B-PA is a cost effective choice, especially when
trying to apply deep detection network on mobile device.

IV. CONCLUSION

In this paper, we focus on designing a concise instance
detection model that has very few parameters but high ac-
curacy. Our whole framework provides a combination of
the region proposal technique BING and a pruned Alexnet.
Moreover, to address the problem of over-fitting, a novel
data extension strategy is developed. We showed that only
preserving one fully connected layer and 75% neurons on each
layer of original Alexnet is adequate to represent objects when
detecting on instance dataset. Besides, patch-level realism is
sufficient for training region-proposal based object detectors.
Our method, which incorporates network compression with
data extension, provides a simple way to deploy an existing
notable neural network model on mobile applications.
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Fig. 4. Detection samples of B-PA on two Dataset.Top: Detection on WRGB-D Dataset;Bottom :Detection on GMU Kitchen Dataset;Noticeable,in the
detection on GMU Kitchen dataset,the upper line shows detection results with B-PA trained on real data; lower line shows detection with B-PA trained on
both with realistic data and our extended data. The red bounding boxes represent false detection, and yellow boxes are correct detection.

TABLE I
COMPARATIVE RESULTS ON GMU KITCHEN DATASET

Detection Model Pop secret Mahatma rice Red bull Nature v2 Hunt sauce Honey bunches mAP

Real Data
Faster RCNN [12] 86.4% 74.7% 54.6% 85.9% 81.8% 91.9% 78.0%
SSD [13] 64.8% 62.9% 27.7% 70.3% 64.5% 81.8% 59.1%
B-PA 80.2% 76.4% 30.5% 87.2% 80.4% 60.93% 64.8%

Real Data+ Extended Data
Model:Faster RCNN [12]
Data:SP-BL-SS [5]+real 93.6% 81.9 % 54.1% 88.6% 85.5% 91.4% 82.5%

Model:SSD [13]
Data:SP-BL-SS [5]+real 85.2% 67.5% 37.6% 78.9% 74.2% 85.1% 71.4%

Model:B-PA
Data:Extended data+Real 90.2% 83.2% 54.9% 91.0% 87.7% 76.3% 80.55%

(a) cap (b) cerealbox

(c) flashlight (d) sodacan

Fig. 5. Precision-recall curves comparing performance with traditional
learning method: HOG+SVM [9], BING+ Color-Shape- Texture+ Cascade
Classifier [11] and our proposed method B-PA on WRGB-D scene dataset.
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